IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v143y2019icp14-26.html
   My bibliography  Save this article

Comparative evaluation of global low-carbon urban transport

Author

Listed:
  • Li, Wenxiang
  • Bao, Lei
  • Wang, Luqi
  • Li, Ye
  • Mai, Xianmin

Abstract

Given increasing concern about climate change, the trend toward low-carbon urban transport development has global appeal. The evaluation of low-carbon urban transport is a prerequisite for a transition toward low-carbon urban transport. However, most of the existing research focuses only on the absolute evaluation of urban transport CO2 emissions, which do not represent the level of low-carbon urban transport. In addition, an absolute evaluation is not comparable across different cities over time because it ignores the effects of urban heterogeneity. Therefore, this paper develops a comparative evaluation method that considers the effects of urban population scale, population density and economic development. A benchmark model of per capita CO2 emissions for different cities with different properties is established based on the relationships between urban population scale, population density, and economic development. Then, a comparative evaluation index is derived from the benchmark model to independently evaluate the effects of policy factors, which may reflect the level of low-carbon urban transport. As a result, cities with low-carbon urban transport can be identified. Furthermore, four urban transport transition types are identified: stable high-carbon transitions, stable low-carbon transitions, low-carbon transitions, and high-carbon transitions. These methods are applied to 180 cities worldwide to verify their effectiveness. This is the first time that 180 global cities have been compared using a unified and quantitative evaluation index of low-carbon urban transport.

Suggested Citation

  • Li, Wenxiang & Bao, Lei & Wang, Luqi & Li, Ye & Mai, Xianmin, 2019. "Comparative evaluation of global low-carbon urban transport," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 14-26.
  • Handle: RePEc:eee:tefoso:v:143:y:2019:i:c:p:14-26
    DOI: 10.1016/j.techfore.2019.02.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162518315920
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2019.02.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nakamura, Kazuki & Hayashi, Yoshitsugu, 2013. "Strategies and instruments for low-carbon urban transport: An international review on trends and effects," Transport Policy, Elsevier, vol. 29(C), pages 264-274.
    2. Fodha, Mouez & Zaghdoud, Oussama, 2010. "Economic growth and pollutant emissions in Tunisia: An empirical analysis of the environmental Kuznets curve," Energy Policy, Elsevier, vol. 38(2), pages 1150-1156, February.
    3. Luo, Xiao & Dong, Liang & Dou, Yi & Li, Yan & Liu, Kai & Ren, Jingzheng & Liang, Hanwei & Mai, Xianmin, 2017. "Factor decomposition analysis and causal mechanism investigation on urban transport CO2 emissions: Comparative study on Shanghai and Tokyo," Energy Policy, Elsevier, vol. 107(C), pages 658-668.
    4. Cohen, Gail & Jalles, Joao Tovar & Loungani, Prakash & Marto, Ricardo, 2018. "The long-run decoupling of emissions and output: Evidence from the largest emitters," Energy Policy, Elsevier, vol. 118(C), pages 58-68.
    5. Tan, Sieting & Yang, Jin & Yan, Jinyue & Lee, Chewtin & Hashim, Haslenda & Chen, Bin, 2017. "A holistic low carbon city indicator framework for sustainable development," Applied Energy, Elsevier, vol. 185(P2), pages 1919-1930.
    6. Brand, Christian & Tran, Martino & Anable, Jillian, 2012. "The UK transport carbon model: An integrated life cycle approach to explore low carbon futures," Energy Policy, Elsevier, vol. 41(C), pages 107-124.
    7. Wenxiang Li & Ye Li & Haopeng Deng & Lei Bao, 2018. "Planning of Electric Public Transport System under Battery Swap Mode," Sustainability, MDPI, vol. 10(7), pages 1-17, July.
    8. van Vuuren, Detlef P. & Hoogwijk, Monique & Barker, Terry & Riahi, Keywan & Boeters, Stefan & Chateau, Jean & Scrieciu, Serban & van Vliet, Jasper & Masui, Toshihiko & Blok, Kornelis & Blomen, Eliane , 2009. "Comparison of top-down and bottom-up estimates of sectoral and regional greenhouse gas emission reduction potentials," Energy Policy, Elsevier, vol. 37(12), pages 5125-5139, December.
    9. Tapio, Petri, 2005. "Towards a theory of decoupling: degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001," Transport Policy, Elsevier, vol. 12(2), pages 137-151, March.
    10. Geels, Frank W., 2012. "A socio-technical analysis of low-carbon transitions: introducing the multi-level perspective into transport studies," Journal of Transport Geography, Elsevier, vol. 24(C), pages 471-482.
    11. Luqi Wang & Xiaolong Xue & Yue Shi & Zeyu Wang & Ankang Ji, 2018. "A Dynamic Analysis to Evaluate the Environmental Performance of Cities in China," Sustainability, MDPI, vol. 10(3), pages 1-16, March.
    12. Gomi, Kei & Shimada, Kouji & Matsuoka, Yuzuru, 2010. "A low-carbon scenario creation method for a local-scale economy and its application in Kyoto city," Energy Policy, Elsevier, vol. 38(9), pages 4783-4796, September.
    13. Udo E. Simonis, 2013. "Decoupling Natural Resource Use and Environmental Impacts from Economic Growth," International Journal of Social Economics, Emerald Group Publishing, vol. 40(4), pages 385-386, March.
    14. Jalil, Abdul & Mahmud, Syed F., 2009. "Environment Kuznets curve for CO2 emissions: A cointegration analysis for China," Energy Policy, Elsevier, vol. 37(12), pages 5167-5172, December.
    15. Stern, David I. & Common, Michael S. & Barbier, Edward B., 1996. "Economic growth and environmental degradation: The environmental Kuznets curve and sustainable development," World Development, Elsevier, vol. 24(7), pages 1151-1160, July.
    16. Oecd, 2006. "Decoupling: A Conceptual Overview," OECD Papers, OECD Publishing, vol. 5(11), pages 1-31.
    17. Poumanyvong, Phetkeo & Kaneko, Shinji, 2010. "Does urbanization lead to less energy use and lower CO2 emissions? A cross-country analysis," Ecological Economics, Elsevier, vol. 70(2), pages 434-444, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gen Li & Jingwen Wang & Fan Liu & Tao Wang & Ying Zhou & Airui Tian, 2023. "Regional Differences and Convergence of Technical Efficiency in China’s Marine Economy under Carbon Emission Constraints," Sustainability, MDPI, vol. 15(9), pages 1-17, May.
    2. Xiaomei Li & Yiwen Zhang & Zijie Yang & Yijun Zhu & Cihang Li & Wenxiang Li, 2023. "Modeling Choice Behaviors for Ridesplitting under a Carbon Credit Scheme," Sustainability, MDPI, vol. 15(16), pages 1-17, August.
    3. Mulrow, John & Derrible, Sybil & Samaras, Constantine, 2019. "Sociotechnical convex hulls and the evolution of transportation activity: A method and application to US travel survey data," Technological Forecasting and Social Change, Elsevier, vol. 149(C).
    4. Tao, Xiangyang & Zhao, Jing & Hong, Jingke & Xiao, Fei, 2024. "Pathway towards carbon peaking cities in the Chinese transport sector," Transport Policy, Elsevier, vol. 153(C), pages 39-53.
    5. Jieshuang Dong & Yiming Li & Wenxiang Li & Songze Liu, 2022. "CO 2 Emission Reduction Potential of Road Transport to Achieve Carbon Neutrality in China," Sustainability, MDPI, vol. 14(9), pages 1-24, May.
    6. Tao, Xuezong & Zhu, Lichao, 2024. "Drivers of transportation CO2 emissions and their changing patterns: Empirical results from 18 countries," Journal of Transport Geography, Elsevier, vol. 119(C).
    7. Wu, Si & Hu, Shougeng & Frazier, Amy E., 2021. "Spatiotemporal variation and driving factors of carbon emissions in three industrial land spaces in China from 1997 to 2016," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    8. Xiaohong Jiang & Jianxiao Ma & Huizhe Zhu & Xiucheng Guo & Zhaoguo Huang, 2020. "Evaluating the Carbon Emissions Efficiency of the Logistics Industry Based on a Super-SBM Model and the Malmquist Index from a Strong Transportation Strategy Perspective in China," IJERPH, MDPI, vol. 17(22), pages 1-19, November.
    9. Zhu, Lichao, 2023. "Comparative evaluation of CO2 emissions from transportation in countries around the world," Journal of Transport Geography, Elsevier, vol. 110(C).
    10. Weisong Li & Zhenwei Wang & Zhibin Mao & Jiaxing Cui, 2022. "Spatially Non-Stationary Response of Carbon Emissions to Urbanization in Han River Ecological Economic Belt, China," IJERPH, MDPI, vol. 20(1), pages 1-15, December.
    11. Lu, Youshui & Li, Yue & Tang, Xiaojun & Cai, Bowei & Wang, Hua & Liu, Lei & Wan, Shaohua & Yu, Keping, 2022. "STRICTs: A Blockchain-enabled Smart Emission Cap Restrictive and Carbon Permit Trading System," Applied Energy, Elsevier, vol. 313(C).
    12. Chen, Jiandong & Gao, Ming & Mangla, Sachin Kumar & Song, Malin & Wen, Jie, 2020. "Effects of technological changes on China's carbon emissions," Technological Forecasting and Social Change, Elsevier, vol. 153(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zanin, Luca & Marra, Giampiero, 2012. "Assessing the functional relationship between CO2 emissions and economic development using an additive mixed model approach," Economic Modelling, Elsevier, vol. 29(4), pages 1328-1337.
    2. Aida Sy & Tony Tinker & Abdelkader Derbali & Lamia Jamel, 2016. "Economic growth, financial development, trade openness, and CO 2 emissions in European countries," African Journal of Accounting, Auditing and Finance, Inderscience Enterprises Ltd, vol. 5(2), pages 155-179.
    3. Boutabba, Mohamed Amine, 2014. "The impact of financial development, income, energy and trade on carbon emissions: Evidence from the Indian economy," Economic Modelling, Elsevier, vol. 40(C), pages 33-41.
    4. Muhammad Shahbaz & Avik Sinha, 2019. "Environmental Kuznets curve for CO2emissions: a literature survey," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 46(1), pages 106-168, January.
    5. Kais, Saidi & Sami, Hammami, 2016. "An econometric study of the impact of economic growth and energy use on carbon emissions: Panel data evidence from fifty eight countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1101-1110.
    6. Sheng, Pengfei & Li, Jun & Zhai, Mengxin & Huang, Shoujun, 2020. "Coupling of economic growth and reduction in carbon emissions at the efficiency level: Evidence from China," Energy, Elsevier, vol. 213(C).
    7. Omri, Anis & Daly, Saida & Rault, Christophe & Chaibi, Anissa, 2015. "Financial development, environmental quality, trade and economic growth: What causes what in MENA countries," Energy Economics, Elsevier, vol. 48(C), pages 242-252.
    8. Ben Lahouel, Béchir & Taleb, Lotfi & Ben Zaied, Younes & Managi, Shunsuke, 2021. "Does ICT change the relationship between total factor productivity and CO2 emissions? Evidence based on a nonlinear model," Energy Economics, Elsevier, vol. 101(C).
    9. Muhammad Bilal Khan & Hummera Saleem & Malik Shahzad Shabbir & Xie Huobao, 2022. "The effects of globalization, energy consumption and economic growth on carbon dioxide emissions in South Asian countries," Energy & Environment, , vol. 33(1), pages 107-134, February.
    10. Shahbaz, Muhammad & Sbia, Rashid & Hamdi, Helmi, 2013. "The Environmental cost of Skiing in the Desert? Evidence from Cointegration with unknown Structural breaks in UAE," MPRA Paper 48007, University Library of Munich, Germany, revised 03 Jul 2013.
    11. Onafowora, Olugbenga A. & Owoye, Oluwole, 2014. "Bounds testing approach to analysis of the environment Kuznets curve hypothesis," Energy Economics, Elsevier, vol. 44(C), pages 47-62.
    12. Shahbaz, Muhammad & Jalil, Abdul & Dube, Smile, 2010. "Environmental Kuznets curve (EKC): Times series evidence from Portugal," MPRA Paper 27443, University Library of Munich, Germany.
    13. Mohamed Amine Boutabba, 2013. "The impact of financial development, income, energy and trade on carbon emissions: Evidence from the Indian economy," Documents de recherche 13-05, Centre d'Études des Politiques Économiques (EPEE), Université d'Evry Val d'Essonne.
    14. Miloud Lacheheb & A. S. Abdul Rahim & Abdalla Sirag, 2015. "Economic Growth and Carbon Dioxide Emissions: Investigating the Environmental Kuznets Curve Hypothesis in Algeria," International Journal of Energy Economics and Policy, Econjournals, vol. 5(4), pages 1125-1132.
    15. Farhani, Sahbi & Chaibi, Anissa & Rault, Christophe, 2014. "CO2 emissions, output, energy consumption, and trade in Tunisia," Economic Modelling, Elsevier, vol. 38(C), pages 426-434.
    16. Saboori, Behnaz & Sulaiman, Jamalludin & Mohd, Saidatulakmal, 2012. "Economic growth and CO2 emissions in Malaysia: A cointegration analysis of the Environmental Kuznets Curve," Energy Policy, Elsevier, vol. 51(C), pages 184-191.
    17. Lamia Jamel & Samir Maktouf, 2017. "The nexus between economic growth, financial development, trade openness, and CO2 emissions in European countries," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1341456-134, January.
    18. Audi, Marc & Ali, Amjad, 2018. "Determinants of Environmental Degradation under the Perspective of Globalization: A Panel Analysis of Selected MENA Nations," MPRA Paper 85776, University Library of Munich, Germany.
    19. repec:ipg:wpaper:2014-582 is not listed on IDEAS
    20. Sunde, Tafirenyika, 2018. "Revisiting the Environmental Kuznets Curve and the Role of Energy Consumption: The Case of Namibia," MPRA Paper 86507, University Library of Munich, Germany.
    21. Shahbaz, Muhammad & Sinha, Avik, 2019. "Environmental Kuznets Curve for CO2 emission: A survey of empirical literature," MPRA Paper 100257, University Library of Munich, Germany, revised 2019.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:143:y:2019:i:c:p:14-26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.