IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i9p1844-d1244023.html
   My bibliography  Save this article

The Impact of Economic Growth and Urbanisation on Environmental Degradation in the Baltic States: An Extended Kaya Identity

Author

Listed:
  • Daiva Makutėnienė

    (Department of Applied Economics, Finance and Accounting, Faculty of Bioeconomy Development, Agriculture Academy, Vytautas Magnus University, 53361 Kaunas, Lithuania)

  • Algirdas Justinas Staugaitis

    (Department of Applied Economics, Finance and Accounting, Faculty of Bioeconomy Development, Agriculture Academy, Vytautas Magnus University, 53361 Kaunas, Lithuania)

  • Valdemaras Makutėnas

    (Department of Applied Economics, Finance and Accounting, Faculty of Bioeconomy Development, Agriculture Academy, Vytautas Magnus University, 53361 Kaunas, Lithuania)

  • Gunta Grīnberga-Zālīte

    (Institute of Economics and Regional Development, Latvia University of Life Sciences and Technologies, 3001 Jelgava, Latvia)

Abstract

The main aim of this article is to empirically examine the impact of economic growth and urbanisation on environmental degradation, as well as the existence of the environmental Kuznets curve (EKC) in three Baltic States (Lithuania, Latvia, and Estonia) from 2000 to 2020. The main Kaya identity and the extended urban Kaya identity models are applied within the analysis. The multiple regression analysis made it possible to assess the influence of urbanisation and other factors on greenhouse gas (GHG) emissions in the studied countries, as well as test the hypothesis of the inverted U-shaped EKC. The main finding reveals that GDP per capita growth has the largest and increasing effect on GHG emissions in all three countries. It was also found that changes in population in urban areas in Lithuania and Latvia reduced the amount of GHG until 2020, while in Estonia, the growing urban population greatly contributed to increasing GHG emissions. As a result, processes related to urbanisation have not yet had a significant impact on environmental quality in Lithuania and Latvia. Meanwhile, in Estonia, this is a significant factor that policymakers need to focus on when solving environmental pollution reduction problems. The hypothesis of the EKC was mostly supported when analysing GHG emissions in Lithuania and Estonia and using GDP per capita as an indicator for economic growth. On the other hand, it was found that the impact of the urbanisation rate on GHG emissions is not curved, yet there is some evidence that in Estonia, a growing urbanisation rate is related to diminishing GHG emissions, according to the multiple regression analysis. The results of the study showed that policymakers should consider economic growth and, especially in Estonia, urbanisation when solving problems related to environmental degradation.

Suggested Citation

  • Daiva Makutėnienė & Algirdas Justinas Staugaitis & Valdemaras Makutėnas & Gunta Grīnberga-Zālīte, 2023. "The Impact of Economic Growth and Urbanisation on Environmental Degradation in the Baltic States: An Extended Kaya Identity," Agriculture, MDPI, vol. 13(9), pages 1-25, September.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:9:p:1844-:d:1244023
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/9/1844/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/9/1844/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mavromatidis, Georgios & Orehounig, Kristina & Richner, Peter & Carmeliet, Jan, 2016. "A strategy for reducing CO2 emissions from buildings with the Kaya identity – A Swiss energy system analysis and a case study," Energy Policy, Elsevier, vol. 88(C), pages 343-354.
    2. Alwyn Young, 2013. "Inequality, the Urban-Rural Gap, and Migration," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 128(4), pages 1727-1785.
    3. Vaclovas Miškinis & Arvydas Galinis & Inga Konstantinavičiūtė & Vidas Lekavičius & Eimantas Neniškis, 2021. "The Role of Renewable Energy Sources in Dynamics of Energy-Related GHG Emissions in the Baltic States," Sustainability, MDPI, vol. 13(18), pages 1-35, September.
    4. Ang, B.W., 2015. "LMDI decomposition approach: A guide for implementation," Energy Policy, Elsevier, vol. 86(C), pages 233-238.
    5. Batara Surya & Despry Nur Annisa Ahmad & Harry Hardian Sakti & Hernita Sahban, 2020. "Land Use Change, Spatial Interaction, and Sustainable Development in the Metropolitan Urban Areas, South Sulawesi Province, Indonesia," Land, MDPI, vol. 9(3), pages 1-43, March.
    6. Luis Camarero & Jesús Oliva, 2019. "Thinking in rural gap: mobility and social inequalities," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-7, December.
    7. Lazăr, Dorina & Minea, Alexandru & Purcel, Alexandra-Anca, 2019. "Pollution and economic growth: Evidence from Central and Eastern European countries," Energy Economics, Elsevier, vol. 81(C), pages 1121-1131.
    8. Cheng, Lu & Mi, Zhifu & Sudmant, Andrew & Coffman, D'Maris, 2022. "Bigger cities better climate? Results from an analysis of urban areas in China," Energy Economics, Elsevier, vol. 107(C).
    9. Yuzhe Wu & Jiaojiao Luo & Liyin Shen & Martin Skitmore, 2018. "The Effects of an Energy Use Paradigm Shift on Carbon Emissions: A Simulation Study," Sustainability, MDPI, vol. 10(5), pages 1-18, May.
    10. Zhang, Chuanguo & Lin, Yan, 2012. "Panel estimation for urbanization, energy consumption and CO2 emissions: A regional analysis in China," Energy Policy, Elsevier, vol. 49(C), pages 488-498.
    11. Eka Sudarmaji & Noer Azam Achsani & Yandra Arkeman & Idqan Fahmi, 2022. "Decomposition Factors Household Energy Subsidy Consumption in Indonesia: Kaya Identity and Logarithmic Mean Divisia Index Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 12(1), pages 355-364.
    12. Mihaela Simionescu & Adam Wojciechowski & Arkadiusz Tomczyk & Marcin Rabe, 2021. "Revised Environmental Kuznets Curve for V4 Countries and Baltic States," Energies, MDPI, vol. 14(11), pages 1-15, June.
    13. Gudipudi, Ramana & Rybski, Diego & Lüdeke, Matthias K.B. & Zhou, Bin & Liu, Zhu & Kropp, Jürgen P., 2019. "The efficient, the intensive, and the productive: Insights from urban Kaya scaling," Applied Energy, Elsevier, vol. 236(C), pages 155-162.
    14. Siksnelyte, Indre & Zavadskas, Edmundas Kazimieras & Bausys, Romualdas & Streimikiene, Dalia, 2019. "Implementation of EU energy policy priorities in the Baltic Sea Region countries: Sustainability assessment based on neutrosophic MULTIMOORA method," Energy Policy, Elsevier, vol. 125(C), pages 90-102.
    15. Lin, Yuancheng & Ma, Linwei & Li, Zheng & Ni, Weidou, 2023. "The carbon reduction potential by improving technical efficiency from energy sources to final services in China: An extended Kaya identity analysis," Energy, Elsevier, vol. 263(PE).
    16. Róbert Csalódi & Tímea Czvetkó & Viktor Sebestyén & János Abonyi, 2022. "Sectoral Analysis of Energy Transition Paths and Greenhouse Gas Emissions," Energies, MDPI, vol. 15(21), pages 1-26, October.
    17. Huang, Ying & Liao, Cuiping & Zhang, Jingjing & Guo, Hongxu & Zhou, Nan & Zhao, Daiqing, 2019. "Exploring potential pathways towards urban greenhouse gas peaks: A case study of Guangzhou, China," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    18. Muhammad Shahbaz & Rashid Sbia & Helmi Hamdi & Ilhan Ozturk, 2014. "Economic growth, electricity consumption, urbanization and environmental degradation relationship in United Arab Emirates," Post-Print halshs-01902764, HAL.
    19. Pui, Kiew Ling & Othman, Jamal, 2019. "The influence of economic, technical, and social aspects on energy-associated CO2 emissions in Malaysia: An extended Kaya identity approach," Energy, Elsevier, vol. 181(C), pages 468-493.
    20. Štreimikienė, Dalia & Balezentis, Tomas, 2016. "Kaya identity for analysis of the main drivers of GHG emissions and feasibility to implement EU “20–20–20” targets in the Baltic States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1108-1113.
    21. Vaclovas Miskinis & Arvydas Galinis & Inga Konstantinaviciute & Vidas Lekavicius & Eimantas Neniskis, 2019. "Comparative Analysis of the Energy Sector Development Trends and Forecast of Final Energy Demand in the Baltic States," Sustainability, MDPI, vol. 11(2), pages 1-27, January.
    22. Daiva Makutėnienė & Algirdas Justinas Staugaitis & Valdemaras Makutėnas & Dalia Juočiūnienė & Yuriy Bilan, 2022. "An Empirical Investigation into Greenhouse Gas Emissions and Agricultural Economic Performance in Baltic Countries: A Non-Linear Framework," Agriculture, MDPI, vol. 12(9), pages 1-22, August.
    23. Vaclovas Miskinis & Arvydas Galinis & Viktorija Bobinaite & Inga Konstantinaviciute & Eimantas Neniskis, 2023. "Impact of Key Drivers on Energy Intensity and GHG Emissions in Manufacturing in the Baltic States," Sustainability, MDPI, vol. 15(4), pages 1-25, February.
    24. Ramana Gudipudi & Diego Rybski & Matthias KB Lüdeke & Jürgen P Kropp, 2019. "Urban emission scaling — Research insights and a way forward," Environment and Planning B, , vol. 46(9), pages 1678-1683, November.
    25. Chuntao Wu & Maozhu Liao & Chengliang Liu, 2019. "Acquiring and Geo-Visualizing Aviation Carbon Footprint among Urban Agglomerations in China," Sustainability, MDPI, vol. 11(17), pages 1-16, August.
    26. Wang, Shaojian & Liu, Xiaoping & Zhou, Chunshan & Hu, Jincan & Ou, Jinpei, 2017. "Examining the impacts of socioeconomic factors, urban form, and transportation networks on CO2 emissions in China’s megacities," Applied Energy, Elsevier, vol. 185(P1), pages 189-200.
    27. Graeme S. Cumming & Andreas Buerkert & Ellen M. Hoffmann & Eva Schlecht & Stephan von Cramon-Taubadel & Teja Tscharntke, 2014. "Implications of agricultural transitions and urbanization for ecosystem services," Nature, Nature, vol. 515(7525), pages 50-57, November.
    28. Yixi Xue & Jie Ren & Xiaohang Bi, 2019. "Impact of Influencing Factors on CO 2 Emissions in the Yangtze River Delta during Urbanization," Sustainability, MDPI, vol. 11(15), pages 1-19, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mihail Busu, 2019. "The Role of Renewables in a Low-Carbon Society: Evidence from a Multivariate Panel Data Analysis at the EU Level," Sustainability, MDPI, vol. 11(19), pages 1-16, September.
    2. Xiaoxu, Xing & Qiangmin, Xi & Weihao, Shi, 2024. "Impact of urban compactness on carbon emission in Chinese cities: From moderating effects of industrial diversity and job-housing imbalances," Land Use Policy, Elsevier, vol. 143(C).
    3. Zou, Chenchen & Ma, Minda & Zhou, Nan & Feng, Wei & You, Kairui & Zhang, Shufan, 2023. "Toward carbon free by 2060: A decarbonization roadmap of operational residential buildings in China," Energy, Elsevier, vol. 277(C).
    4. Yan-Qing Kang & Tao Zhao & Peng Wu, 2016. "Impacts of energy-related CO 2 emissions in China: a spatial panel data technique," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 405-421, March.
    5. Wang, Wei-Zheng & Liu, Lan-Cui & Liao, Hua & Wei, Yi-Ming, 2021. "Impacts of urbanization on carbon emissions: An empirical analysis from OECD countries," Energy Policy, Elsevier, vol. 151(C).
    6. Viktor Koval & Viktoriia Khaustova & Stella Lippolis & Olha Ilyash & Tetiana Salashenko & Piotr Olczak, 2023. "Fundamental Shifts in the EU’s Electric Power Sector Development: LMDI Decomposition Analysis," Energies, MDPI, vol. 16(14), pages 1-22, July.
    7. Zhiqian Yu & Dalia Streimikiene & Tomas Balezentis & Rimantas Dapkus, 2017. "Final Energy Consumption Trends and Drivers in Czech Republic and Latvia," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 19(46), pages 866-866, August.
    8. Xue-Ting Jiang & Min Su & Rongrong Li, 2018. "Decomposition Analysis in Electricity Sector Output from Carbon Emissions in China," Sustainability, MDPI, vol. 10(9), pages 1-18, September.
    9. Rashid Sbia & Muhammad Shahbaz & Ilhan Ozturk, 2017. "Economic growth, financial development, urbanisation and electricity consumption nexus in UAE," Economic Research-Ekonomska Istraživanja, Taylor & Francis Journals, vol. 30(1), pages 527-549, January.
    10. Fei Wang & Changjian Wang & Jing Chen & Zeng Li & Ling Li, 2020. "Examining the determinants of energy-related carbon emissions in Central Asia: country-level LMDI and EKC analysis during different phases," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7743-7769, December.
    11. Mohamed Abdouli & Olfa Kamoun & Besma Hamdi, 2018. "The impact of economic growth, population density, and FDI inflows on $$\hbox {CO}_{2}$$ CO 2 emissions in BRICTS countries: Does the Kuznets curve exist?," Empirical Economics, Springer, vol. 54(4), pages 1717-1742, June.
    12. Yan-Qing Kang & Tao Zhao & Peng Wu, 2016. "Impacts of energy-related CO2 emissions in China: a spatial panel data technique," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 405-421, March.
    13. Vélez-Henao, Johan-Andrés & Font Vivanco, David & Hernández-Riveros, Jesús-Antonio, 2019. "Technological change and the rebound effect in the STIRPAT model: A critical view," Energy Policy, Elsevier, vol. 129(C), pages 1372-1381.
    14. Wang, Shaojian & Zeng, Jingyuan & Liu, Xiaoping, 2019. "Examining the multiple impacts of technological progress on CO2 emissions in China: A panel quantile regression approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 140-150.
    15. Yang Ding & Qing Yang & Lanjuan Cao, 2021. "Examining the Impacts of Economic, Social, and Environmental Factors on the Relationship between Urbanization and CO 2 Emissions," Energies, MDPI, vol. 14(21), pages 1-23, November.
    16. Setia Damayanti & Eka Sudarmaji & Herlan Masrio, 2024. "The Critical Role of Energy Intensity in Decarbonizing ASEAN: Integrating Growth and Emissions Reductions," International Journal of Energy Economics and Policy, Econjournals, vol. 14(3), pages 247-259, May.
    17. Mihaela Simionescu & Adam Wojciechowski & Arkadiusz Tomczyk & Marcin Rabe, 2021. "Revised Environmental Kuznets Curve for V4 Countries and Baltic States," Energies, MDPI, vol. 14(11), pages 1-15, June.
    18. Wang, Qiang & Jiang, Xue-ting & Li, Rongrong, 2017. "Comparative decoupling analysis of energy-related carbon emission from electric output of electricity sector in Shandong Province, China," Energy, Elsevier, vol. 127(C), pages 78-88.
    19. Zhang, Qianxue & Liao, Hua & Hao, Yu, 2018. "Does one path fit all? An empirical study on the relationship between energy consumption and economic development for individual Chinese provinces," Energy, Elsevier, vol. 150(C), pages 527-543.
    20. Mihaela D. Rovinaru & Dana E. Bako & Flavius I. Rovinaru & Adina V. Rus & Sebastian G. Aldea, 2022. "Where Are We Heading? Tackling the Climate Change in a Globalized World," Sustainability, MDPI, vol. 15(1), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:9:p:1844-:d:1244023. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.