IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v96y2024ics0038012124003082.html
   My bibliography  Save this article

Low-carbon route optimization model for multimodal freight transport considering value and time attributes

Author

Listed:
  • Chen, Xinghui
  • Hu, Xinghua
  • Liu, Haobing

Abstract

As the international community increasingly focuses on climate change, optimizing low-carbon transportation routes in the multimodal freight transport system has become a pressing issue. However, due to the variability in cargo properties and the influence of various factors on transportation route decisions, formulating a low-carbon and economical multimodal freight transport plan remains a significant challenge. To address the issue, this study considered cargoes with different attributes in terms of both value and time attributes. Triangular fuzzy numbers were employed to represent the uncertain demand for cargo, with confidence levels introduced for clarification. A low-carbon route decision optimization model for multimodal freight transport was established to minimize the combined transportation carbon emission and time costs. The catastrophe adaptive genetic algorithm, based on Monte Carlo sampling, was employed to solve the model using arithmetic examples. Finally, parameter sensitivity analysis revealed that adjustments to carbon tax values and changes in the proportion of electric trucks and green electricity supply had the most significant impact on the low-carbon route decision-making plan for multimodal freight transport. For low value-added and timeliness-strong cargo, a 60 % increase in carbon tax value shifted the mode of transportation from road to railway. When the carbon tax increased by more than 140 %, the transportation mode shifted from railway to waterway. Additionally, when the proportion of electric trucks and green electricity supply both exceeded 80 %, the transportation mode between some city nodes shifted from railway to road. When these proportions increased beyond 90 %, road transportation became the predominant mode.

Suggested Citation

  • Chen, Xinghui & Hu, Xinghua & Liu, Haobing, 2024. "Low-carbon route optimization model for multimodal freight transport considering value and time attributes," Socio-Economic Planning Sciences, Elsevier, vol. 96(C).
  • Handle: RePEc:eee:soceps:v:96:y:2024:i:c:s0038012124003082
    DOI: 10.1016/j.seps.2024.102108
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012124003082
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2024.102108?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Msefula, Griffin & Hou, Tony Chieh-Tse & Lemesi, Tina, 2024. "Dynamics of legal structure and geopolitical influence on carbon tax in response to green transportation," Applied Energy, Elsevier, vol. 371(C).
    2. El Yaagoubi, Amina & Ferjani, Aicha & Essaghir, Yasmina & Sheikhahmadi, Farrokh & Abourraja, Mohamed Nezar & Boukachour, Jaouad & Baron, Marie-Laure & Duvallet, Claude & Khodadad-Saryazdi, Ali, 2022. "A logistic model for a french intermodal rail/road freight transportation system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    3. Bonnini, S. & Borghesi, M. & Giacalone, M., 2024. "Semi-parametric approach for modelling overdispersed count data with application to Industry 4.0," Socio-Economic Planning Sciences, Elsevier, vol. 95(C).
    4. Huang, Ying & Liao, Cuiping & Zhang, Jingjing & Guo, Hongxu & Zhou, Nan & Zhao, Daiqing, 2019. "Exploring potential pathways towards urban greenhouse gas peaks: A case study of Guangzhou, China," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Qu, Chenrui & Zeng, Qingcheng & Li, Kevin X. & Lin, Kun-Chin, 2020. "Modeling incentive strategies for landside integration in multimodal transport chains," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 47-64.
    6. Caggiani, Leonardo & Colovic, Aleksandra & Ottomanelli, Michele, 2020. "An equality-based model for bike-sharing stations location in bicycle-public transport multimodal mobility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 251-265.
    7. Liu, Zhiyuan & Wang, Zewen & Cheng, Qixiu & Yin, Ruyang & Wang, Meng, 2021. "Estimation of urban network capacity with second-best constraints for multimodal transport systems," Transportation Research Part B: Methodological, Elsevier, vol. 152(C), pages 276-294.
    8. Xu, Haonan & Liu, Jiaguo & Qi, Siwen, 2024. "Incentive policy for rail-water multimodal transport: Subsidizing price or constructing dry port?," Transport Policy, Elsevier, vol. 150(C), pages 219-243.
    9. Antunes, Jorge & Tan, Yong & Wanke, Peter & Jabbour, Charbel Jose Chiappetta, 2023. "Impact of R&D and innovation in Chinese road transportation sustainability performance: A novel trigonometric envelopment analysis for ideal solutions (TEA-IS)," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    10. Burak Ayar & Hande Yaman, 2012. "An intermodal multicommodity routing problem with scheduled services," Computational Optimization and Applications, Springer, vol. 53(1), pages 131-153, September.
    11. Archetti, Claudia & Peirano, Lorenzo & Speranza, M. Grazia, 2022. "Optimization in multimodal freight transportation problems: A Survey," European Journal of Operational Research, Elsevier, vol. 299(1), pages 1-20.
    12. Qi, Yingxiu & Harrod, Steven & Psaraftis, Harilaos N. & Lang, Maoxiang, 2022. "Transport service selection and routing with carbon emissions and inventory costs consideration in the context of the Belt and Road Initiative," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    13. Noori, Amir & Bonakdari, Hossein & Salimi, Amir Hossein & Gharabaghi, Bahram, 2021. "A group Multi-Criteria Decision-Making method for water supply choice optimization," Socio-Economic Planning Sciences, Elsevier, vol. 77(C).
    14. Feng, Xuehao & Song, Rui & Yin, Wenwei & Yin, Xiaowei & Zhang, Ruiyou, 2023. "Multimodal transportation network with cargo containerization technology: Advantages and challenges," Transport Policy, Elsevier, vol. 132(C), pages 128-143.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Shan & Wu, Jianhong & Jiang, Yonglei & Yang, Xutao, 2024. "Impacts of the sea-rail intermodal transport policy on carbon emission reduction: The China case study," Transport Policy, Elsevier, vol. 158(C), pages 211-223.
    2. Tu, Renfu & Jiao, Yingqi & Qiu, Rui & Liao, Qi & Xu, Ning & Du, Jian & Liang, Yongtu, 2023. "Energy saving and consumption reduction in the transportation of petroleum products: A pipeline pricing optimization perspective," Applied Energy, Elsevier, vol. 342(C).
    3. Zhang, M. & Pel, A.J., 2016. "Synchromodal hinterland freight transport: Model study for the port of Rotterdam," Journal of Transport Geography, Elsevier, vol. 52(C), pages 1-10.
    4. Guorong Chen & Changyan Liu, 2023. "Can Low–Carbon City Development Stimulate Population Growth? Insights from China’s Low–Carbon Pilot Program," Sustainability, MDPI, vol. 15(20), pages 1-22, October.
    5. Li, Haojie & Zhang, Yingheng & Zhu, Manman & Ren, Gang, 2021. "Impacts of COVID-19 on the usage of public bicycle share in London," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 140-155.
    6. Zhang, Fang & Lu, Jian & Hu, Xiaojian & Meng, Qiang, 2023. "Integrated deployment of dedicated lane and roadside unit considering uncertain road capacity under the mixed-autonomy traffic environment," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    7. Ji, Jingna & Li, Tao & Yang, Lei, 2023. "Pricing and carbon reduction strategies for vertically differentiated firms under Cap-and-Trade regulation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 171(C).
    8. Meng, Qiang & Hei, Xiuling & Wang, Shuaian & Mao, Haijun, 2015. "Carrying capacity procurement of rail and shipping services for automobile delivery with uncertain demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 82(C), pages 38-54.
    9. Alessia Giulianetti & Marco Gotelli & Anna Sciomachen, 2024. "Comparative Analysis of Train Departure Strategies in a Container Shipment," Logistics, MDPI, vol. 8(3), pages 1-16, September.
    10. Zhichao Ma & Jie Zhang & Huanhuan Wang & Shaochan Gao, 2023. "Optimization of Sustainable Bi-Objective Cold-Chain Logistics Route Considering Carbon Emissions and Customers’ Immediate Demands in China," Sustainability, MDPI, vol. 15(7), pages 1-23, March.
    11. Karina Braga Marsola & Andréa Leda Ramos de Oliveira & Matheus Yasuo Ribeiro Utino & Paulo Mann & Thayane Caroline Oliveira da Conceição, 2025. "The Impact of Exogenous Variables on Soybean Freight: A Machine Learning Analysis," Sustainability, MDPI, vol. 17(3), pages 1-24, January.
    12. Junseung Kim & Kyungku Kim & Kum Fai Yuen & Keun-Sik Park, 2020. "Cost and Scenario Analysis of Intermodal Transportation Routes from Korea to the USA: After the Panama Canal Expansion," Sustainability, MDPI, vol. 12(16), pages 1-20, August.
    13. Basso, Franco & Cox, Tomás & Pezoa, Raúl & Maldonado, Tomás & Varas, Mauricio, 2024. "Characterizing last-mile freight transportation using mobile phone data: The case of Santiago, Chile," Transportation Research Part A: Policy and Practice, Elsevier, vol. 186(C).
    14. Ma, Wenxin & Lin, Shichao & Ci, Yusheng & Li, Ruimin, 2024. "Resilience evaluation and improvement of post-disaster multimodal transportation networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 189(C).
    15. Lili Yang & Simeng Fei & Hongfei Jia & Jingdong Qi & Luyao Wang & Xinning Hu, 2023. "Study on the Relationship between the Spatial Distribution of Shared Bicycle Travel Demand and Urban Built Environment," Sustainability, MDPI, vol. 15(18), pages 1-16, September.
    16. Dalė Dzemydienė & Aurelija Burinskienė & Kristina Čižiūnienė, 2024. "An Approach of Integration of Contextual Data in E-Service System for Management of Multimodal Cargo Transportation," Sustainability, MDPI, vol. 16(18), pages 1-23, September.
    17. Alexander Chupin & Dmitry Morkovkin & Marina Bolsunovskaya & Anna Boyko & Alexander Leksashov, 2024. "Techno-Economic Sustainability Potential of Large-Scale Systems: Forecasting Intermodal Freight Transportation Volumes," Sustainability, MDPI, vol. 16(3), pages 1-17, February.
    18. Zhang, Yilin & Zhang, Anming & Wang, Kun & Zheng, Shiyuan & Yang, Hangjun & Hong, Junjie, 2023. "Impact of CR Express and intermodal freight transport competition on China-Europe Route: Emission and welfare implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 171(C).
    19. Chen, Yuzhu & Guo, Weimin & Lund, Peter D. & Du, Na & Yang, Kun & wang, Jun, 2024. "Configuration optimization of a wind-solar based net-zero emission tri-generation energy system considering renewable power and carbon trading mechanisms," Renewable Energy, Elsevier, vol. 232(C).
    20. Nigro, Marialisa & Castiglione, Marisdea & Maria Colasanti, Fabio & De Vincentis, Rosita & Valenti, Gaetano & Liberto, Carlo & Comi, Antonio, 2022. "Exploiting floating car data to derive the shifting potential to electric micromobility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 157(C), pages 78-93.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:96:y:2024:i:c:s0038012124003082. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.