IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v4y2011i12p2295-2310d15333.html
   My bibliography  Save this article

Alternative Scenarios for the Development of a Low-Carbon City: A Case Study of Beijing, China

Author

Listed:
  • Lixiao Zhang

    (State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China)

  • Yueyi Feng

    (State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China)

  • Bin Chen

    (State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China)

Abstract

The establishment of low-carbon cities has been suggested all over the World, since cities are key drivers of energy usage and the associated carbon emissions. This paper presents a scenario analysis of future energy consumption and carbon emissions for the city of Beijing. The Long-range Energy Alternatives Planning (LEAP) model is used to simulate a range of pathways and to analyze how these would change energy consumption and carbon emissions from 2007 to 2030. Three scenarios have been designed to describe future energy strategies in relation to the development of Beijing city, namely a reference scenario (RS), control scenario (CS), and integrated scenario (IS). The results show that under the IS the total energy demand in Beijing is expected to reach 88.61 million tonnes coal equivalent (Mtce) by 2030 (59.32 Mtce in 2007), 55.82% and 32.72% lower than the values under the RS and the CS, respectively. The total carbon emissions in 2030 under the IS, although higher than the 2007 level, will be 62.22% and 40.27% lower than under the RS and the CS, respectively, with emissions peaking in 2026 and declining afterwards. In terms of the potential for reduction of energy consumption and carbon emissions, the industrial sector will continue to act as the largest contributor under the IS and CS compared with the RS, while the building and transport sectors are identified as promising fields for achieving effective control of energy consumption and carbon emissions over the next two decades. The calculation results show that an integrated package of measures is the most effective in terms of energy savings and carbon emissions mitigation, although it also faces the largest challenge to achieve the related targets.

Suggested Citation

  • Lixiao Zhang & Yueyi Feng & Bin Chen, 2011. "Alternative Scenarios for the Development of a Low-Carbon City: A Case Study of Beijing, China," Energies, MDPI, vol. 4(12), pages 1-16, December.
  • Handle: RePEc:gam:jeners:v:4:y:2011:i:12:p:2295-2310:d:15333
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/4/12/2295/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/4/12/2295/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Qingyu & Weili, Tian & Yumei, Wei & Yingxu, Chen, 2007. "External costs from electricity generation of China up to 2030 in energy and abatement scenarios," Energy Policy, Elsevier, vol. 35(8), pages 4295-4304, August.
    2. Cai, Wenjia & Wang, Can & Chen, Jining & Wang, Ke & Zhang, Ying & Lu, Xuedu, 2008. "Comparison of CO2 emission scenarios and mitigation opportunities in China's five sectors in 2020," Energy Policy, Elsevier, vol. 36(3), pages 1181-1194, March.
    3. Kadian, Rashmi & Dahiya, R.P. & Garg, H.P., 2007. "Energy-related emissions and mitigation opportunities from the household sector in Delhi," Energy Policy, Elsevier, vol. 35(12), pages 6195-6211, December.
    4. Ji, Xi & Chen, G.Q. & Chen, B. & Jiang, M.M., 2009. "Exergy-based assessment for waste gas emissions from Chinese transportation," Energy Policy, Elsevier, vol. 37(6), pages 2231-2240, June.
    5. Lin, Jianyi & Cao, Bin & Cui, Shenghui & Wang, Wei & Bai, Xuemei, 2010. "Evaluating the effectiveness of urban energy conservation and GHG mitigation measures: The case of Xiamen city, China," Energy Policy, Elsevier, vol. 38(9), pages 5123-5132, September.
    6. Gielen, Dolf & Changhong, Chen, 2001. "The CO2 emission reduction benefits of Chinese energy policies and environmental policies:: A case study for Shanghai, period 1995-2020," Ecological Economics, Elsevier, vol. 39(2), pages 257-270, November.
    7. Shin, Ho-Chul & Park, Jin-Won & Kim, Ho-Seok & Shin, Eui-Soon, 2005. "Environmental and economic assessment of landfill gas electricity generation in Korea using LEAP model," Energy Policy, Elsevier, vol. 33(10), pages 1261-1270, July.
    8. Kumar, Amit & Bhattacharya, S.C & Pham, H.L, 2003. "Greenhouse gas mitigation potential of biomass energy technologies in Vietnam using the long range energy alternative planning system model," Energy, Elsevier, vol. 28(7), pages 627-654.
    9. Pradhan, Shreekar & Ale, Bhakta Bahadur & Amatya, Vishwa Bhusan, 2006. "Mitigation potential of greenhouse gas emission and implications on fuel consumption due to clean energy vehicles as public passenger transport in Kathmandu Valley of Nepal: A case study of trolley bu," Energy, Elsevier, vol. 31(12), pages 1748-1760.
    10. Phdungsilp, Aumnad, 2010. "Integrated energy and carbon modeling with a decision support system: Policy scenarios for low-carbon city development in Bangkok," Energy Policy, Elsevier, vol. 38(9), pages 4808-4817, September.
    11. Dhakal, Shobhakar, 2009. "Urban energy use and carbon emissions from cities in China and policy implications," Energy Policy, Elsevier, vol. 37(11), pages 4208-4219, November.
    12. Chen, G.Q. & Chen, B., 2009. "Extended-exergy analysis of the Chinese society," Energy, Elsevier, vol. 34(9), pages 1127-1144.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Yu & Hu, Wei & Chen, Paul & Ruan, Roger, 2017. "Household biogas CDM project development in rural China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 184-191.
    2. Cai, Bofeng & Zhang, Lixiao, 2014. "Urban CO2 emissions in China: Spatial boundary and performance comparison," Energy Policy, Elsevier, vol. 66(C), pages 557-567.
    3. Ouedraogo, Nadia S., 2017. "Africa energy future: Alternative scenarios and their implications for sustainable development strategies," Energy Policy, Elsevier, vol. 106(C), pages 457-471.
    4. Wang, Chen & Engels, Anita & Wang, Zhaohua, 2018. "Overview of research on China's transition to low-carbon development: The role of cities, technologies, industries and the energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1350-1364.
    5. Collaço, Flávia Mendes de Almeida & Dias, Luís Pereira & Simoes, Sofia G. & Pukšec, Tomislav & Seixas, Júlia & Bermann, Célio, 2019. "What if São Paulo (Brazil) would like to become a renewable and endogenous energy -based megacity?," Renewable Energy, Elsevier, vol. 138(C), pages 416-433.
    6. Pedro Gerber Machado & Ana Carolina Rodrigues Teixeira & Flavia Mendes de Almeida Collaço & Adam Hawkes & Dominique Mouette, 2020. "Assessment of Greenhouse Gases and Pollutant Emissions in the Road Freight Transport Sector: A Case Study for São Paulo State, Brazil," Energies, MDPI, vol. 13(20), pages 1-26, October.
    7. Edgar A. Barragán-Escandón & Esteban Zalamea-León & John Calle-Sigüencia & Julio Terrados-Cepeda, 2022. "Impact of Solar Thermal Energy on the Energy Matrix under Equatorial Andean Context," Energies, MDPI, vol. 15(16), pages 1-25, August.
    8. Feng, Y.Y. & Chen, S.Q. & Zhang, L.X., 2013. "System dynamics modeling for urban energy consumption and CO2 emissions: A case study of Beijing, China," Ecological Modelling, Elsevier, vol. 252(C), pages 44-52.
    9. Didenko Alexander, 2013. "Multicriterial assessment of resand energy-efficiency promoting policy mixes for Russian Federation," Review of Business and Economics Studies, CyberLeninka;Федеральное государственное образовательное бюджетное учреждение высшего профессионального образования «Финансовый университет при Правительстве Российской Федерации» (Финансовый университет), issue 1, pages 5-18.
    10. Abdulsalam S. Alghamdi & AbuBakr S. Bahaj & Yue Wu, 2017. "Assessment of Large Scale Photovoltaic Power Generation from Carport Canopies," Energies, MDPI, vol. 10(5), pages 1-22, May.
    11. Chuyu Xia & Yan Li & Yanmei Ye & Zhou Shi & Jingming Liu, 2017. "Decomposed Driving Factors of Carbon Emissions and Scenario Analyses of Low-Carbon Transformation in 2020 and 2030 for Zhejiang Province," Energies, MDPI, vol. 10(11), pages 1-16, October.
    12. Yazdanie, M. & Orehounig, K., 2021. "Advancing urban energy system planning and modeling approaches: Gaps and solutions in perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    13. Antonio Barragán-Escandón & Esteban Zalamea-León & Julio Terrados-Cepeda, 2019. "Incidence of Photovoltaics in Cities Based on Indicators of Occupancy and Urban Sustainability," Energies, MDPI, vol. 12(5), pages 1-26, February.
    14. Lixiao Zhang & Qiuhong Hu & Fan Zhang, 2014. "Input-Output Modeling for Urban Energy Consumption in Beijing: Dynamics and Comparison," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-11, March.
    15. Feng, Tong & Lin, Zhongguo & Du, Huibin & Qiu, Yueming & Zuo, Jian, 2021. "Does low-carbon pilot city program reduce carbon intensity? Evidence from Chinese cities," Research in International Business and Finance, Elsevier, vol. 58(C).
    16. Xuecheng Wang & Xu Tang & Zhenhua Feng & Yi Zhang, 2019. "Characterizing the Embodied Carbon Emissions Flows and Ecological Relationships among Four Chinese Megacities and Other Provinces," Sustainability, MDPI, vol. 11(9), pages 1-19, May.
    17. Tang, Pengcheng & Yang, Shuwang & Shen, Jun & Fu, Shuke, 2018. "Does China's low-carbon pilot programme really take off? Evidence from land transfer of energy-intensive industry," Energy Policy, Elsevier, vol. 114(C), pages 482-491.
    18. Min Lu & Xing Wang & Yuquan Cang, 2018. "Carbon Productivity: Findings from Industry Case Studies in Beijing," Energies, MDPI, vol. 11(10), pages 1-19, October.
    19. Emodi, Nnaemeka Vincent & Chaiechi, Taha & Alam Beg, A.B.M. Rabiul, 2019. "Are emission reduction policies effective under climate change conditions? A backcasting and exploratory scenario approach using the LEAP-OSeMOSYS Model," Applied Energy, Elsevier, vol. 236(C), pages 1183-1217.
    20. Qingduo Mao & Ben Ma & Hongshuai Wang & Qi Bian, 2019. "Investigating Policy Instrument Adoption in Low-Carbon City Development: A Case Study from China," Energies, MDPI, vol. 12(18), pages 1-17, September.
    21. Liu, Xue & Ma, Shoufeng & Tian, Junfang & Jia, Ning & Li, Geng, 2015. "A system dynamics approach to scenario analysis for urban passenger transport energy consumption and CO2 emissions: A case study of Beijing," Energy Policy, Elsevier, vol. 85(C), pages 253-270.
    22. Chen, Qianli & Cai, Bofeng & Dhakal, Shobhakar & Pei, Sha & Liu, Chunlan & Shi, Xiaoping & Hu, Fangfang, 2017. "CO2 emission data for Chinese cities," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 198-208.
    23. Nadia S. Ouedraogo, 2017. "Energy futures modelling for African countries: LEAP model application," WIDER Working Paper Series 056, World Institute for Development Economic Research (UNU-WIDER).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prasad, Ravita D. & Bansal, R.C. & Raturi, Atul, 2014. "Multi-faceted energy planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 686-699.
    2. Ahanchian, Mohammad & Biona, Jose Bienvenido Manuel, 2014. "Energy demand, emissions forecasts and mitigation strategies modeled over a medium-range horizon: The case of the land transportation sector in Metro Manila," Energy Policy, Elsevier, vol. 66(C), pages 615-629.
    3. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    4. Feng, Y.Y. & Chen, S.Q. & Zhang, L.X., 2013. "System dynamics modeling for urban energy consumption and CO2 emissions: A case study of Beijing, China," Ecological Modelling, Elsevier, vol. 252(C), pages 44-52.
    5. Lin, Jianyi & Cao, Bin & Cui, Shenghui & Wang, Wei & Bai, Xuemei, 2010. "Evaluating the effectiveness of urban energy conservation and GHG mitigation measures: The case of Xiamen city, China," Energy Policy, Elsevier, vol. 38(9), pages 5123-5132, September.
    6. Park, Nyun-Bae & Yun, Sun-Jin & Jeon, Eui-Chan, 2013. "An analysis of long-term scenarios for the transition to renewable energy in the Korean electricity sector," Energy Policy, Elsevier, vol. 52(C), pages 288-296.
    7. Emodi, Nnaemeka Vincent & Emodi, Chinenye Comfort & Murthy, Girish Panchakshara & Emodi, Adaeze Saratu Augusta, 2017. "Energy policy for low carbon development in Nigeria: A LEAP model application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 247-261.
    8. Chuan Tian & Guohui Feng & Shuai Li & Fuqiang Xu, 2019. "Scenario Analysis on Energy Consumption and CO 2 Emissions Reduction Potential in Building Heating Sector at Community Level," Sustainability, MDPI, vol. 11(19), pages 1-26, September.
    9. Sreekanth, K.J., 2016. "Review on integrated strategies for energy policy planning and evaluation of GHG mitigation alternatives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 837-850.
    10. Halkos, George & Tzeremes, Panagiotis, 2015. "Assessing greenhouse gas emissions in Estonia's energy system," MPRA Paper 66105, University Library of Munich, Germany.
    11. George Halkos & Nickolaos Tzeremes & Panayiotis Tzeremes, 2015. "A nonparametric approach for evaluating long-term energy policy scenarios: an application to the Greek energy system," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 4(1), pages 1-14, December.
    12. AlSabbagh, Maha & Siu, Yim Ling & Guehnemann, Astrid & Barrett, John, 2017. "Integrated approach to the assessment of CO2e-mitigation measures for the road passenger transport sector in Bahrain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 203-215.
    13. Subramanyam, Veena & Kumar, Amit & Talaei, Alireza & Mondal, Md. Alam Hossain, 2017. "Energy efficiency improvement opportunities and associated greenhouse gas abatement costs for the residential sector," Energy, Elsevier, vol. 118(C), pages 795-807.
    14. Qunli Wu & Chenyang Peng, 2016. "Scenario Analysis of Carbon Emissions of China’s Electric Power Industry Up to 2030," Energies, MDPI, vol. 9(12), pages 1-18, November.
    15. Hong, Jong Ho & Kim, Jitae & Son, Wonik & Shin, Heeyoung & Kim, Nahyun & Lee, Woong Ki & Kim, Jintae, 2019. "Long-term energy strategy scenarios for South Korea: Transition to a sustainable energy system," Energy Policy, Elsevier, vol. 127(C), pages 425-437.
    16. Hu, Guangxiao & Ma, Xiaoming & Ji, Junping, 2019. "Scenarios and policies for sustainable urban energy development based on LEAP model – A case study of a postindustrial city: Shenzhen China," Applied Energy, Elsevier, vol. 238(C), pages 876-886.
    17. Emília Inês Come Zebra & Gilberto Mahumane & Federico Antonio Canu & Ana Cardoso, 2021. "Assessing the Greenhouse Gas Impact of a Renewable Energy Feed-in Tariff Policy in Mozambique: Towards NDC Ambition and Recommendations to Effectively Measure, Report, and Verify Its Implementation," Sustainability, MDPI, vol. 13(10), pages 1-21, May.
    18. Islas, Jorge & Manzini, Fabio & Masera, Omar, 2007. "A prospective study of bioenergy use in Mexico," Energy, Elsevier, vol. 32(12), pages 2306-2320.
    19. Mondal, Md Alam Hossain & Bryan, Elizabeth & Ringler, Claudia & Mekonnen, Dawit & Rosegrant, Mark, 2018. "Ethiopian energy status and demand scenarios: Prospects to improve energy efficiency and mitigate GHG emissions," Energy, Elsevier, vol. 149(C), pages 161-172.
    20. Li, J.S. & Chen, G.Q. & Lai, T.M. & Ahmad, B. & Chen, Z.M. & Shao, L. & Ji, Xi, 2013. "Embodied greenhouse gas emission by Macao," Energy Policy, Elsevier, vol. 59(C), pages 819-833.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:4:y:2011:i:12:p:2295-2310:d:15333. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.