IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v250y2019icp1418-1431.html
   My bibliography  Save this article

Combustion improvement and emission reduction through control of ethanol ratio and intake air temperature in reactivity controlled compression ignition combustion engine

Author

Listed:
  • Jo, Seongin
  • Park, Suhan
  • Kim, Hyung Jun
  • Lee, Jong-Tae

Abstract

The reactivity controlled compression ignition (RCCI) combustion has the potential to simultaneously reduce the NOX and PM emissions and maintain combustion performance even when injection timing is advanced. Because intake air temperature is an important factor affecting the reactivity of fuels, it is necessary to study optimized fuel supply ratios according to the intake air temperature. Therefore, the purpose of this study was to analyze combustion and exhaust characteristics in relation to the fuel supply ratio, injection timing, and intake air temperature. In this study, ethanol was injected into an intake port; increasing the ethanol supplied ratio increased the ignition delay. Thus, the net indicated mean effective pressure (IMEPnet), compared with conventional diesel combustion, increased from 4.14 to 4.90 bar for the advanced injection timing (BTDC 27°). In addition, because the combustion period was lengthened and combustion temperature lowered, the NOX emission decreased (19.1 → 2.7 g/kWh); however, the THC (1.1 → 2.5 g/kWh) and CO (5.2 → 10.1 g/kWh) emissions increased. Moreover, burning an homogeneous mixture of ethanol decreased the particulate matter emission from 74 to 45 μg/m3. However, under high intake air temperature conditions, the effect of ethanol ratio on ignition delay was small. Therefore, the injection timing at which the maximum IMEPnet occurred was retarded. In addition, as the intake air temperature increased, the THC and CO emissions decreased and that of NOX increased.

Suggested Citation

  • Jo, Seongin & Park, Suhan & Kim, Hyung Jun & Lee, Jong-Tae, 2019. "Combustion improvement and emission reduction through control of ethanol ratio and intake air temperature in reactivity controlled compression ignition combustion engine," Applied Energy, Elsevier, vol. 250(C), pages 1418-1431.
  • Handle: RePEc:eee:appene:v:250:y:2019:i:c:p:1418-1431
    DOI: 10.1016/j.apenergy.2019.05.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919308670
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.05.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yadav, Jaykumar & Ramesh, A., 2018. "Injection strategies for reducing smoke and improving the performance of a butanol-diesel common rail dual fuel engine," Applied Energy, Elsevier, vol. 212(C), pages 1-12.
    2. Hooftman, Nils & Messagie, Maarten & Van Mierlo, Joeri & Coosemans, Thierry, 2018. "A review of the European passenger car regulations – Real driving emissions vs local air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 86(C), pages 1-21.
    3. Zheng, Zunqing & Xia, Mingtao & Liu, Haifeng & Wang, Xiaofeng & Yao, Mingfa, 2018. "Experimental study on combustion and emissions of dual fuel RCCI mode fueled with biodiesel/n-butanol, biodiesel/2,5-dimethylfuran and biodiesel/ethanol," Energy, Elsevier, vol. 148(C), pages 824-838.
    4. Olesky, Laura Manofsky & Lavoie, George A. & Assanis, Dennis N. & Wooldridge, Margaret S. & Martz, Jason B., 2014. "The effects of diluent composition on the rates of HCCI and spark assisted compression ignition combustion," Applied Energy, Elsevier, vol. 124(C), pages 186-198.
    5. Liu, Haifeng & Ma, Guixiang & Hu, Bin & Zheng, Zunqing & Yao, Mingfa, 2018. "Effects of port injection of hydrous ethanol on combustion and emission characteristics in dual-fuel reactivity controlled compression ignition (RCCI) mode," Energy, Elsevier, vol. 145(C), pages 592-602.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siva Krishna Reddy Dwarshala & Siva Subramaniam Rajakumar & Obula Reddy Kummitha & Elumalai Perumal Venkatesan & Ibham Veza & Olusegun David Samuel, 2023. "A Review on Recent Developments of RCCI Engines Operated with Alternative Fuels," Energies, MDPI, vol. 16(7), pages 1-27, April.
    2. Pan, Suozhu & Cai, Kai & Cai, Min & Du, Chenbo & Li, Xin & Han, Weiqiang & Wang, Xin & Liu, Daming & Wei, Jiangjun & Fang, Jia & Bao, Xiuchao, 2021. "Experimental study on the cyclic variations of ethanol/diesel reactivity controlled compression ignition (RCCI) combustion in a heavy-duty diesel engine," Energy, Elsevier, vol. 237(C).
    3. Li, Zilong & Zhang, Yaoyuan & Huang, Guan & Zhao, Wenbin & He, Zhuoyao & Qian, Yong & Lu, Xingcai, 2020. "Control of intake boundary conditions for enabling clean combustion in variable engine conditions under intelligent charge compression ignition (ICCI) mode," Applied Energy, Elsevier, vol. 274(C).
    4. Zhao, Wenbin & Li, Zilong & Huang, Guan & Zhang, Yaoyuan & Qian, Yong & Lu, Xingcai, 2020. "Experimental investigation of direct injection dual fuel of n-butanol and biodiesel on Intelligent Charge Compression Ignition (ICCI) Combustion mode," Applied Energy, Elsevier, vol. 266(C).
    5. Han, Weiqiang & Lu, Yao & Jin, Chao & Tian, Xiaocong & Peng, Yiqiang & Pan, Suozhu & Liu, Haifeng & Zhang, Peng & Zhong, Yingzi, 2020. "Study on influencing factors of particle emissions from a RCCI engine with variation of premixing ratio and total cycle energy," Energy, Elsevier, vol. 202(C).
    6. Fırat, Müjdat & Altun, Şehmus & Okcu, Mutlu & Varol, Yasin, 2022. "Comparison of ethanol/diesel fuel dual direct injection (DI2) strategy with reactivity controlled compression ignition (RCCI) in a diesel research engine," Energy, Elsevier, vol. 255(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas, Justin Jacob & Sabu, V.R. & Nagarajan, G. & Kumar, Suraj & Basrin, G., 2020. "Influence of waste vegetable oil biodiesel and hexanol on a reactivity controlled compression ignition engine combustion and emissions," Energy, Elsevier, vol. 206(C).
    2. Pan, Suozhu & Cai, Kai & Cai, Min & Du, Chenbo & Li, Xin & Han, Weiqiang & Wang, Xin & Liu, Daming & Wei, Jiangjun & Fang, Jia & Bao, Xiuchao, 2021. "Experimental study on the cyclic variations of ethanol/diesel reactivity controlled compression ignition (RCCI) combustion in a heavy-duty diesel engine," Energy, Elsevier, vol. 237(C).
    3. Ghadikolaei, Meisam Ahmadi & Wong, Pak Kin & Cheung, Chun Shun & Ning, Zhi & Yung, Ka-Fu & Zhao, Jing & Gali, Nirmal Kumar & Berenjestanaki, Alireza Valipour, 2021. "Impact of lower and higher alcohols on the physicochemical properties of particulate matter from diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    4. Zhen, Xudong & Wang, Yang & Liu, Daming, 2020. "Bio-butanol as a new generation of clean alternative fuel for SI (spark ignition) and CI (compression ignition) engines," Renewable Energy, Elsevier, vol. 147(P1), pages 2494-2521.
    5. Jung, Dongwon & Iida, Norimasa, 2015. "Closed-loop control of HCCI combustion for DME using external EGR and rebreathed EGR to reduce pressure-rise rate with combustion-phasing retard," Applied Energy, Elsevier, vol. 138(C), pages 315-330.
    6. Zhao, Rui & Liu, Dong, 2022. "Temperature dependence of chemical effects of ethanol and dimethyl ether mixing on benzene and PAHs formation in ethylene counter-flow diffusion flames," Energy, Elsevier, vol. 257(C).
    7. Liu, Yang & Cheng, Xiaobei & Qin, Longjiang & Wang, Xin & Yao, Junjie & Wu, Hui, 2020. "Experimental investigation on soot formation characteristics of n-heptane/butanol isomers blends in laminar diffusion flames," Energy, Elsevier, vol. 211(C).
    8. Wang, Xinyan & Zhao, Hua & Xie, Hui, 2016. "Effect of dilution strategies and direct injection ratios on stratified flame ignition (SFI) hybrid combustion in a PFI/DI gasoline engine," Applied Energy, Elsevier, vol. 165(C), pages 801-814.
    9. Karol Tucki & Remigiusz Mruk & Olga Orynycz & Andrzej Wasiak & Katarzyna Botwińska & Arkadiusz Gola, 2019. "Simulation of the Operation of a Spark Ignition Engine Fueled with Various Biofuels and Its Contribution to Technology Management," Sustainability, MDPI, vol. 11(10), pages 1-17, May.
    10. Liu, Shang & Lin, Zhelong & Zhang, Hao & Lei, Nuo & Qi, Yunliang & Wang, Zhi, 2023. "Impact of ammonia addition on knock resistance and combustion performance in a gasoline engine with high compression ratio," Energy, Elsevier, vol. 262(PA).
    11. Kinsella, L. & Stefaniec, A. & Foley, A. & Caulfield, B., 2023. "Pathways to decarbonising the transport sector: The impacts of electrifying taxi fleets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    12. Toni Bogdanoff & Murat Tiryakioğlu & Tomas Liljenfors & Anders E. W. Jarfors & Salem Seifeddine & Ehsan Ghassemali, 2023. "On the Effectiveness of Rotary Degassing of Recycled Al-Si Alloy Melts: The Effect on Melt Quality and Energy Consumption for Melt Preparation," Sustainability, MDPI, vol. 15(6), pages 1-10, March.
    13. Thanigaivelan Vadivelu & Lavanya Ramanujam & Rajesh Ravi & Shivaprasad K. Vijayalakshmi & Manoranjitham Ezhilchandran, 2022. "An Exploratory Study of Direct Injection (DI) Diesel Engine Performance Using CNSL—Ethanol Biodiesel Blends with Hydrogen," Energies, MDPI, vol. 16(1), pages 1-13, December.
    14. Rosal, Ignacio del, 2022. "European dieselization: Policy insights from EU car trade," Transport Policy, Elsevier, vol. 115(C), pages 181-194.
    15. Karol Tucki & Olga Orynycz & Mateusz Mitoraj-Wojtanek, 2020. "Perspectives for Mitigation of CO 2 Emission due to Development of Electromobility in Several Countries," Energies, MDPI, vol. 13(16), pages 1-24, August.
    16. Chen, Chen & Zhao, Xuan & Qi, Dandan & Yang, Kaixuan & Xu, Lei & Li, Tianjiao & Ying, Yaoyao & Liu, Dong, 2023. "Sooting transition diagnostics in counter-flow flames of C4 isomer fuels," Energy, Elsevier, vol. 262(PB).
    17. Babu, D. & Thangarasu, Vinoth & Ramanathan, Anand, 2020. "Artificial neural network approach on forecasting diesel engine characteristics fuelled with waste frying oil biodiesel," Applied Energy, Elsevier, vol. 263(C).
    18. Zhao, Wenbin & Mi, Shijie & Wu, Haoqing & Zhang, Yaoyuan & He, Zhuoyao & Qian, Yong & Lu, Xingcai, 2022. "Towards a comprehensive understanding of mode transition between biodiesel-biobutanol dual-fuel ICCI low temperature combustion and conventional CI combustion - Part ΙΙ: A system optimization at low l," Energy, Elsevier, vol. 241(C).
    19. Anders E.W. Jarfors & Andong Du & Gegan Yu & Jinchuan Zheng & Kaikun Wang, 2020. "On the Sustainable Choice of Alloying Elements for Strength of Aluminum-Based Alloys," Sustainability, MDPI, vol. 12(3), pages 1-12, February.
    20. Mogno, Caterina & Fontaras, Georgios & Arcidiacono, Vincenzo & Komnos, Dimitrios & Pavlovic, Jelica & Ciuffo, Biagio & Makridis, Michail & Valverde, Victor, 2022. "The application of the CO2MPAS model for vehicle CO2 emissions estimation over real traffic conditions," Transport Policy, Elsevier, vol. 124(C), pages 152-159.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:250:y:2019:i:c:p:1418-1431. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.