IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i16p4127-d396872.html
   My bibliography  Save this article

Perspectives for Mitigation of CO 2 Emission due to Development of Electromobility in Several Countries

Author

Listed:
  • Karol Tucki

    (Department of Production Engineering, Institute of Mechanical Engineering, Warsaw University of Life Sciences, Nowoursynowska Street 164, 02-787 Warsaw, Poland)

  • Olga Orynycz

    (Department of Production Management, Bialystok University of Technology, Wiejska Street 45A, 15-351 Bialystok, Poland)

  • Mateusz Mitoraj-Wojtanek

    (Department of Production Engineering, Institute of Mechanical Engineering, Warsaw University of Life Sciences, Nowoursynowska Street 164, 02-787 Warsaw, Poland)

Abstract

The creep trend method is used for the analysis of the development of electric car production in three regions: The United States, the European Union and Japan. Based on vehicle registration and population growth data for each year the creep trend method using historical data for the years 2007–2017 is applied for forecasting development up to 2030. Moreover, the original method for calculating the primary energy factor (PEF) was applied to the analysis of power engineering systems in the regions investigated. The assessment of the effects of electromobility development on air quality has been performed, reduction values for pollutant and greenhouse gas emissions have been determined, which was the main objective of this manuscript. Mitigation of air pollutant emissions, i.e., carbon dioxide (CO 2 ), carbon monoxide (CO) and nitrogen oxides (NO x ) was estimated and compared to the eventual expected increase of emissions from power plants due to an increase of the demand for electricity. It can be concluded that electricity powered cars along with appropriate choices of energetic resources as well as electricity distribution management will play the important role to achieve the sustainable energy economy. Based on the emission reduction projections resulting from the projected increase in the number of electric cars, (corrected) emissions will be avoided in 2030 in the amount of over 14,908,000 thousand tonnes CO 2 in European Union, 3,786,000 thousand tonnes CO 2 in United States and 111,683 thousand tonnes CO 2 in Japan.

Suggested Citation

  • Karol Tucki & Olga Orynycz & Mateusz Mitoraj-Wojtanek, 2020. "Perspectives for Mitigation of CO 2 Emission due to Development of Electromobility in Several Countries," Energies, MDPI, vol. 13(16), pages 1-24, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:16:p:4127-:d:396872
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/16/4127/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/16/4127/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Karol Tucki & Olga Orynycz & Andrzej Wasiak & Antoni Świć & Joanna Wichłacz, 2019. "The Impact of Fuel Type on the Output Parameters of a New Biofuel Burner," Energies, MDPI, vol. 12(7), pages 1-12, April.
    2. Schicktanz, M.D. & Wapler, J. & Henning, H.-M., 2011. "Primary energy and economic analysis of combined heating, cooling and power systems," Energy, Elsevier, vol. 36(1), pages 575-585.
    3. Gonçalo Alface & João C. Ferreira & Rúben Pereira, 2019. "Electric Vehicle Charging Process and Parking Guidance App," Energies, MDPI, vol. 12(11), pages 1-16, June.
    4. Kotowicz, Janusz & Brzęczek, Mateusz, 2018. "Analysis of increasing efficiency of modern combined cycle power plant: A case study," Energy, Elsevier, vol. 153(C), pages 90-99.
    5. Karol Tucki & Olga Orynycz & Andrzej Wasiak & Antoni Świć & Wojciech Dybaś, 2019. "Capacity Market Implementation in Poland: Analysis of a Survey on Consequences for the Electricity Market and for Energy Management," Energies, MDPI, vol. 12(5), pages 1-16, March.
    6. Hooftman, Nils & Messagie, Maarten & Van Mierlo, Joeri & Coosemans, Thierry, 2018. "A review of the European passenger car regulations – Real driving emissions vs local air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 86(C), pages 1-21.
    7. Bogdan Ovidiu Varga & Florin Mariasiu & Cristian Daniel Miclea & Ioan Szabo & Anamaria Andreea Sirca & Vlad Nicolae, 2020. "Direct and Indirect Environmental Aspects of an Electric Bus Fleet Under Service," Energies, MDPI, vol. 13(2), pages 1-12, January.
    8. Nils Hooftman & Luis Oliveira & Maarten Messagie & Thierry Coosemans & Joeri Van Mierlo, 2016. "Environmental Analysis of Petrol, Diesel and Electric Passenger Cars in a Belgian Urban Setting," Energies, MDPI, vol. 9(2), pages 1-24, January.
    9. Guo, Zhaomiao & Zhou, Yan, 2019. "Residual value analysis of plug-in vehicles in the United States," Energy Policy, Elsevier, vol. 125(C), pages 445-455.
    10. Krzysztof Kosowski & Karol Tucki & Marian Piwowarski & Robert Stępień & Olga Orynycz & Wojciech Włodarski & Anna Bączyk, 2019. "Thermodynamic Cycle Concepts for High-Efficiency Power Plans. Part A: Public Power Plants 60+," Sustainability, MDPI, vol. 11(2), pages 1-11, January.
    11. Shaw, Duncan & Smith, Chris M. & Scully, Judy, 2019. "From Brexit to Article 50: Applying Critical Realism to the design and analysis of a longitudinal causal mapping study," European Journal of Operational Research, Elsevier, vol. 276(2), pages 723-735.
    12. Meratizaman, Mousa & Monadizadeh, Sina & Tohidi Sardasht, Mohammad & Amidpour, Majid, 2015. "Techno economic and environmental assessment of using gasification process in order to mitigate the emission in the available steam power cycle," Energy, Elsevier, vol. 83(C), pages 1-14.
    13. Swain, Ranjula Bali & Karimu, Amin, 2020. "Renewable electricity and sustainable development goals in the EU," World Development, Elsevier, vol. 125(C).
    14. Wilby, Mark Richard & Rodríguez González, Ana Belén & Vinagre Díaz, Juan José, 2014. "Empirical and dynamic primary energy factors," Energy, Elsevier, vol. 73(C), pages 771-779.
    15. Karol Tucki & Remigiusz Mruk & Olga Orynycz & Andrzej Wasiak & Katarzyna Botwińska & Arkadiusz Gola, 2019. "Simulation of the Operation of a Spark Ignition Engine Fueled with Various Biofuels and Its Contribution to Technology Management," Sustainability, MDPI, vol. 11(10), pages 1-17, May.
    16. Andrés, Lidia & Padilla, Emilio, 2018. "Driving factors of GHG emissions in the EU transport activity," Transport Policy, Elsevier, vol. 61(C), pages 60-74.
    17. Yagi, Michiyuki & Managi, Shunsuke, 2016. "Demographic determinants of car ownership in Japan," Transport Policy, Elsevier, vol. 50(C), pages 37-53.
    18. Karol Tucki & Olga Orynycz & Antoni Świć & Mateusz Mitoraj-Wojtanek, 2019. "The Development of Electromobility in Poland and EU States as a Tool for Management of CO 2 Emissions," Energies, MDPI, vol. 12(15), pages 1-22, July.
    19. Bellocchi, Sara & Klöckner, Kai & Manno, Michele & Noussan, Michel & Vellini, Michela, 2019. "On the role of electric vehicles towards low-carbon energy systems: Italy and Germany in comparison," Applied Energy, Elsevier, vol. 255(C).
    20. Veum, Karina & Bauknecht, Dierk, 2019. "How to reach the EU renewables target by 2030? An analysis of the governance framework," Energy Policy, Elsevier, vol. 127(C), pages 299-307.
    21. Qu Zhao, 2018. "Electromobility research in Germany and China: structural differences," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 473-493, October.
    22. Pregger, Thomas & Nitsch, Joachim & Naegler, Tobias, 2013. "Long-term scenarios and strategies for the deployment of renewable energies in Germany," Energy Policy, Elsevier, vol. 59(C), pages 350-360.
    23. Portugal-Pereira, Joana & Esteban, Miguel, 2014. "Implications of paradigm shift in Japan’s electricity security of supply: A multi-dimensional indicator assessment," Applied Energy, Elsevier, vol. 123(C), pages 424-434.
    24. Zhou, Yue & Wen, Ruoxi & Wang, Hewu & Cai, Hua, 2020. "Optimal battery electric vehicles range: A study considering heterogeneous travel patterns, charging behaviors, and access to charging infrastructure," Energy, Elsevier, vol. 197(C).
    25. José M. Cansino & Antonio Sánchez-Braza & Teresa Sanz-Díaz, 2018. "Policy Instruments to Promote Electro-Mobility in the EU28: A Comprehensive Review," Sustainability, MDPI, vol. 10(7), pages 1-27, July.
    26. Plötz, Patrick & Funke, Simon Árpád & Jochem, Patrick, 2018. "The impact of daily and annual driving on fuel economy and CO2 emissions of plug-in hybrid electric vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 331-340.
    27. Dariusz Mikielewicz & Krzysztof Kosowski & Karol Tucki & Marian Piwowarski & Robert Stępień & Olga Orynycz & Wojciech Włodarski, 2019. "Gas Turbine Cycle with External Combustion Chamber for Prosumer and Distributed Energy Systems," Energies, MDPI, vol. 12(18), pages 1-19, September.
    28. Prescott, Craig & Pilato, Manuela & Bellia, Claudio, 2020. "Geographical indications in the UK after Brexit: An uncertain future?," Food Policy, Elsevier, vol. 90(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hamels, Sam & Himpe, Eline & Laverge, Jelle & Delghust, Marc & Van den Brande, Kjartan & Janssens, Arnold & Albrecht, Johan, 2021. "The use of primary energy factors and CO2 intensities for electricity in the European context - A systematic methodological review and critical evaluation of the contemporary literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    2. Karol Tucki & Olga Orynycz & Agnieszka Dudziak, 2022. "The Impact of the Available Infrastructure on the Electric Vehicle Market in Poland and in EU Countries," IJERPH, MDPI, vol. 19(24), pages 1-23, December.
    3. Barouch Giechaskiel & Dimitrios Komnos & Georgios Fontaras, 2021. "Impacts of Extreme Ambient Temperatures and Road Gradient on Energy Consumption and CO 2 Emissions of a Euro 6d-Temp Gasoline Vehicle," Energies, MDPI, vol. 14(19), pages 1-20, September.
    4. Kornelia Piech, 2022. "Health Care Financing and Economic Performance during the Coronavirus Pandemic, the War in Ukraine and the Energy Transition Attempt," Sustainability, MDPI, vol. 14(17), pages 1-23, August.
    5. Prafula Pearce, 2023. "Special Issue “Energy Transition and Environmental Sustainability”," Energies, MDPI, vol. 16(6), pages 1-3, March.
    6. Anna Stankowska, 2022. "Sustainability Development: Assessment of Selected Indicators of Sustainable Energy Development in Poland and in Selected EU Member States Prior to COVID-19 and Following the Third Wave of COVID-19," Energies, MDPI, vol. 15(6), pages 1-23, March.
    7. Dominika P. Brodowicz & Anna Stankowska, 2021. "European Union’s Goals Towards Electromobility: An Assessment of Plans’ Implementation in Polish Cities," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 645-665.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karol Tucki & Olga Orynycz & Antoni Świć & Mateusz Mitoraj-Wojtanek, 2019. "The Development of Electromobility in Poland and EU States as a Tool for Management of CO 2 Emissions," Energies, MDPI, vol. 12(15), pages 1-22, July.
    2. Dariusz Mikielewicz & Krzysztof Kosowski & Karol Tucki & Marian Piwowarski & Robert Stępień & Olga Orynycz & Wojciech Włodarski, 2019. "Influence of Different Biofuels on the Efficiency of Gas Turbine Cycles for Prosumer and Distributed Energy Power Plants," Energies, MDPI, vol. 12(16), pages 1-21, August.
    3. Karol Tucki & Olga Orynycz & Remigiusz Mruk & Antoni Świć & Katarzyna Botwińska, 2019. "Modeling of Biofuel’s Emissivity for Fuel Choice Management," Sustainability, MDPI, vol. 11(23), pages 1-22, December.
    4. Dariusz Mikielewicz & Krzysztof Kosowski & Karol Tucki & Marian Piwowarski & Robert Stępień & Olga Orynycz & Wojciech Włodarski, 2019. "Gas Turbine Cycle with External Combustion Chamber for Prosumer and Distributed Energy Systems," Energies, MDPI, vol. 12(18), pages 1-19, September.
    5. Olga Orynycz & Karol Tucki & Miron Prystasz, 2020. "Implementation of Lean Management as a Tool for Decrease of Energy Consumption and CO 2 Emissions in the Fast Food Restaurant," Energies, MDPI, vol. 13(5), pages 1-26, March.
    6. Karol Tucki & Olga Orynycz & Agnieszka Dudziak, 2022. "The Impact of the Available Infrastructure on the Electric Vehicle Market in Poland and in EU Countries," IJERPH, MDPI, vol. 19(24), pages 1-23, December.
    7. Wojciech Lewicki & Wojciech Drozdz & Piotr Wroblewski & Krzysztof Zarna, 2021. "The Road to Electromobility in Poland: Consumer Attitude Assessment," European Research Studies Journal, European Research Studies Journal, vol. 0(Special 1), pages 28-39.
    8. Marcin Jamróz & Marian Piwowarski & Paweł Ziemiański & Gabriel Pawlak, 2021. "Technical and Economic Analysis of the Supercritical Combined Gas-Steam Cycle," Energies, MDPI, vol. 14(11), pages 1-21, May.
    9. Karol Tucki & Andrzej Wasiak & Olga Orynycz & Remigiusz Mruk, 2020. "Computer Simulation as a Tool for Managing the Technical Development of Methods for Diagnosing the Technical Condition of a Vehicle," Energies, MDPI, vol. 13(11), pages 1-24, June.
    10. Piotr Wróblewski & Wojciech Drożdż & Wojciech Lewicki & Jakub Dowejko, 2021. "Total Cost of Ownership and Its Potential Consequences for the Development of the Hydrogen Fuel Cell Powered Vehicle Market in Poland," Energies, MDPI, vol. 14(8), pages 1-25, April.
    11. Karol Tucki & Remigiusz Mruk & Olga Orynycz & Andrzej Wasiak & Antoni Świć, 2019. "Thermodynamic Fundamentals for Fuel Production Management," Sustainability, MDPI, vol. 11(16), pages 1-19, August.
    12. Maciej Dzikuć & Joanna Wyrobek & Łukasz Popławski, 2021. "Economic Determinants of Low-Carbon Development in the Visegrad Group Countries," Energies, MDPI, vol. 14(13), pages 1-12, June.
    13. Olga Orynycz & Karol Tucki & Andrzej Wasiak & Robert Sobótka & Arkadiusz Gola, 2019. "Evaluation of the Brake’s Performance Dependence Upon Technical Condition of Car Tires as a Factor of Road Safety Management," Energies, MDPI, vol. 13(1), pages 1-19, December.
    14. Karol Tucki & Remigiusz Mruk & Olga Orynycz & Andrzej Wasiak & Katarzyna Botwińska & Arkadiusz Gola, 2019. "Simulation of the Operation of a Spark Ignition Engine Fueled with Various Biofuels and Its Contribution to Technology Management," Sustainability, MDPI, vol. 11(10), pages 1-17, May.
    15. Magdalena Tutak & Jarosław Brodny, 2019. "Forecasting Methane Emissions from Hard Coal Mines Including the Methane Drainage Process," Energies, MDPI, vol. 12(20), pages 1-28, October.
    16. Wojciech Lewicki & Wojciech Drozdz, 2021. "Electromobility and its Development Prospects in the Context of Industry 4.0: A Comparative Study of Poland and the European Union," European Research Studies Journal, European Research Studies Journal, vol. 0(2B), pages 135-144.
    17. Ommen, Torben & Thorsen, Jan Eric & Markussen, Wiebke Brix & Elmegaard, Brian, 2017. "Performance of ultra low temperature district heating systems with utility plant and booster heat pumps," Energy, Elsevier, vol. 137(C), pages 544-555.
    18. Nilsa Duarte da Silva Lima & Irenilza de Alencar Nääs & João Gilberto Mendes dos Reis & Raquel Baracat Tosi Rodrigues da Silva, 2020. "Classifying the Level of Energy-Environmental Efficiency Rating of Brazilian Ethanol," Energies, MDPI, vol. 13(8), pages 1-16, April.
    19. Marcin Połom & Paweł Wiśniewski, 2021. "Assessment of the Emission of Pollutants from Public Transport Based on the Example of Diesel Buses and Trolleybuses in Gdynia and Sopot," IJERPH, MDPI, vol. 18(16), pages 1-17, August.
    20. Krzysztof Kosowski & Karol Tucki & Marian Piwowarski & Robert Stępień & Olga Orynycz & Wojciech Włodarski, 2019. "Thermodynamic Cycle Concepts for High-Efficiency Power Plants. Part B: Prosumer and Distributed Power Industry," Sustainability, MDPI, vol. 11(9), pages 1-13, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:16:p:4127-:d:396872. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.