IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i6p5189-d1097709.html
   My bibliography  Save this article

On the Effectiveness of Rotary Degassing of Recycled Al-Si Alloy Melts: The Effect on Melt Quality and Energy Consumption for Melt Preparation

Author

Listed:
  • Toni Bogdanoff

    (Department of Materials and Manufacturing, School of Engineering, Jönköping University, 551 11 Jönköping, Sweden)

  • Murat Tiryakioğlu

    (School of Engineering and Technology, Jacksonville University, 2800 University Boulevard N, Jacksonville, FL 32211, USA)

  • Tomas Liljenfors

    (Bryne AB, Åbogatan 1, 343 71 Diö, Sweden)

  • Anders E. W. Jarfors

    (Department of Materials and Manufacturing, School of Engineering, Jönköping University, 551 11 Jönköping, Sweden)

  • Salem Seifeddine

    (Department of Materials and Manufacturing, School of Engineering, Jönköping University, 551 11 Jönköping, Sweden)

  • Ehsan Ghassemali

    (Department of Materials and Manufacturing, School of Engineering, Jönköping University, 551 11 Jönköping, Sweden)

Abstract

The effectiveness of rotary degassing on the defect formation and mechanical properties of the final casting of aluminium alloy EN AC 46000 was investigated, along with its impact on the energy consumption in the casting furnace. In the melt preparation prior to casting, the molten metal is usually transported from the melting furnace to the casting furnace with rotary degassing as a cleaning procedure. Under the conditions of this specific study, negligible degradation was observed in the mechanical properties of the final cast component in an aluminium EN AC 46000 alloy after removing the rotary degassing step in the process. Furthermore, removing the rotary degassing step led to a reduced temperature drop in the melt, thus minimizing the need for reheating (energy consumption) by up to 75% in the casting furnace. The reduced energy consumption was up to 124,000 kWh in yearly production in a 1500 kg casting furnace. The environmental impact showed a ~1500 kg reduction in CO 2 for one 1500 kg electrical casting furnace in a year.

Suggested Citation

  • Toni Bogdanoff & Murat Tiryakioğlu & Tomas Liljenfors & Anders E. W. Jarfors & Salem Seifeddine & Ehsan Ghassemali, 2023. "On the Effectiveness of Rotary Degassing of Recycled Al-Si Alloy Melts: The Effect on Melt Quality and Energy Consumption for Melt Preparation," Sustainability, MDPI, vol. 15(6), pages 1-10, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:5189-:d:1097709
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/6/5189/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/6/5189/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Scarlat, Nicolae & Prussi, Matteo & Padella, Monica, 2022. "Quantification of the carbon intensity of electricity produced and used in Europe," Applied Energy, Elsevier, vol. 305(C).
    2. Hooftman, Nils & Messagie, Maarten & Van Mierlo, Joeri & Coosemans, Thierry, 2018. "A review of the European passenger car regulations – Real driving emissions vs local air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 86(C), pages 1-21.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jānis Krūmiņš & Māris Kļaviņš, 2023. "Investigating the Potential of Nuclear Energy in Achieving a Carbon-Free Energy Future," Energies, MDPI, vol. 16(9), pages 1-31, April.
    2. Stephany Isabel Vallarta-Serrano & Ana Bricia Galindo-Muro & Riccardo Cespi & Rogelio Bustamante-Bello, 2023. "Analysis of GHG Emission from Cargo Vehicles in Megacities: The Case of the Metropolitan Zone of the Valley of Mexico," Energies, MDPI, vol. 16(13), pages 1-19, June.
    3. Alexandr Tsoy & Alexandr Granovskiy & Dmitriy Koretskiy & Diana Tsoy-Davis & Nikita Veselskiy & Mikhail Alechshenko & Alexandr Minayev & Inara Kim & Rita Jamasheva, 2023. "Experimental Study of the Heat Flow and Energy Consumption during Liquid Cooling Due to Radiative Heat Transfer in Winter," Energies, MDPI, vol. 16(13), pages 1-18, June.
    4. Haas, Christian & Kempa, Karol & Moslener, Ulf, 2023. "Dealing with deep uncertainty in the energy transition: What we can learn from the electricity and transportation sectors," Energy Policy, Elsevier, vol. 179(C).
    5. Wojciech Koznowski & Andrzej Łebkowski, 2022. "Unmanned Electric Tugboat Formation Multi-Agent Energy-Aware Control System Concept," Energies, MDPI, vol. 15(24), pages 1-23, December.
    6. Karol Tucki & Remigiusz Mruk & Olga Orynycz & Andrzej Wasiak & Katarzyna Botwińska & Arkadiusz Gola, 2019. "Simulation of the Operation of a Spark Ignition Engine Fueled with Various Biofuels and Its Contribution to Technology Management," Sustainability, MDPI, vol. 11(10), pages 1-17, May.
    7. Kinsella, L. & Stefaniec, A. & Foley, A. & Caulfield, B., 2023. "Pathways to decarbonising the transport sector: The impacts of electrifying taxi fleets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    8. Karol Tucki & Olga Orynycz & Antoni Świć & Mateusz Mitoraj-Wojtanek, 2019. "The Development of Electromobility in Poland and EU States as a Tool for Management of CO 2 Emissions," Energies, MDPI, vol. 12(15), pages 1-22, July.
    9. Rosal, Ignacio del, 2022. "European dieselization: Policy insights from EU car trade," Transport Policy, Elsevier, vol. 115(C), pages 181-194.
    10. Matteo Prussi & Lorenzo Laveneziana & Lorenzo Testa & David Chiaramonti, 2022. "Comparing e-Fuels and Electrification for Decarbonization of Heavy-Duty Transports," Energies, MDPI, vol. 15(21), pages 1-17, October.
    11. Turkson, Richard Fiifi & Atombo, Charles & Akple, Maxwell Selase & Tibu, Henry Mawusi, 2023. "Modelling the adoption of electronic vehicle diagnostic technology for vehicle repairs: A structural equation modelling approach," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    12. Frondel, Manuel & Marggraf, Clemens & Sommer, Stephan & Vance, Colin, 2021. "Reducing vehicle cold start emissions through carbon pricing: Evidence from Germany," Ruhr Economic Papers 896, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    13. Karol Tucki & Olga Orynycz & Mateusz Mitoraj-Wojtanek, 2020. "Perspectives for Mitigation of CO 2 Emission due to Development of Electromobility in Several Countries," Energies, MDPI, vol. 13(16), pages 1-24, August.
    14. Haiguang Zhao & Laihua Shi & Xiaoliu Xu & Jinshan Qiu & Lan Li & Junfang Wang & Wenhan Yu & Yunshan Ge, 2024. "Impact of Shortening Real Driving Emission (RDE) Test Trips on CO, NO X , and PN 10 Emissions from Different Vehicles," Sustainability, MDPI, vol. 16(21), pages 1-15, October.
    15. Eugene Yin Cheung Wong & Danny Chi Kuen Ho & Stuart So & Chi-Wing Tsang & Eve Man Hin Chan, 2021. "Life Cycle Assessment of Electric Vehicles and Hydrogen Fuel Cell Vehicles Using the GREET Model—A Comparative Study," Sustainability, MDPI, vol. 13(9), pages 1-14, April.
    16. Anders E.W. Jarfors & Andong Du & Gegan Yu & Jinchuan Zheng & Kaikun Wang, 2020. "On the Sustainable Choice of Alloying Elements for Strength of Aluminum-Based Alloys," Sustainability, MDPI, vol. 12(3), pages 1-12, February.
    17. Karol Tucki, 2021. "A Computer Tool for Modelling CO 2 Emissions in Driving Tests for Vehicles with Diesel Engines," Energies, MDPI, vol. 14(2), pages 1-30, January.
    18. Olivia Psara & Fernando Fonseca & Olympia Nisiforou & Rui Ramos, 2023. "Evaluation of Urban Sustainability Based on Transportation and Green Spaces: The Case of Limassol, Cyprus," Sustainability, MDPI, vol. 15(13), pages 1-18, July.
    19. Mogno, Caterina & Fontaras, Georgios & Arcidiacono, Vincenzo & Komnos, Dimitrios & Pavlovic, Jelica & Ciuffo, Biagio & Makridis, Michail & Valverde, Victor, 2022. "The application of the CO2MPAS model for vehicle CO2 emissions estimation over real traffic conditions," Transport Policy, Elsevier, vol. 124(C), pages 152-159.
    20. Otto Andersen & Paul Upham & Carlo Aall, 2018. "Technological Response Options after the VW Diesel Scandal: Implications for Engine CO 2 Emissions," Sustainability, MDPI, vol. 10(7), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:5189-:d:1097709. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.