Comparison of ethanol/diesel fuel dual direct injection (DI2) strategy with reactivity controlled compression ignition (RCCI) in a diesel research engine
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2022.124556
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yilmaz, Nadir & Sanchez, Tomas M., 2012. "Analysis of operating a diesel engine on biodiesel-ethanol and biodiesel-methanol blends," Energy, Elsevier, vol. 46(1), pages 126-129.
- Wei, L. & Cheung, C.S. & Ning, Z., 2018. "Effects of biodiesel-ethanol and biodiesel-butanol blends on the combustion, performance and emissions of a diesel engine," Energy, Elsevier, vol. 155(C), pages 957-970.
- Li, Yuqiang & Chen, Yong & Wu, Gang & Liu, Jiangwei, 2018. "Experimental evaluation of water-containing isopropanol-n-butanol-ethanol and gasoline blend as a fuel candidate in spark-ignition engine," Applied Energy, Elsevier, vol. 219(C), pages 42-52.
- Singh, Akhilendra Pratap & Kumar, Vikram & Agarwal, Avinash Kumar, 2020. "Evaluation of comparative engine combustion, performance and emission characteristics of low temperature combustion (PCCI and RCCI) modes," Applied Energy, Elsevier, vol. 278(C).
- Jo, Seongin & Park, Suhan & Kim, Hyung Jun & Lee, Jong-Tae, 2019. "Combustion improvement and emission reduction through control of ethanol ratio and intake air temperature in reactivity controlled compression ignition combustion engine," Applied Energy, Elsevier, vol. 250(C), pages 1418-1431.
- Zheng, Zunqing & Xia, Mingtao & Liu, Haifeng & Wang, Xiaofeng & Yao, Mingfa, 2018. "Experimental study on combustion and emissions of dual fuel RCCI mode fueled with biodiesel/n-butanol, biodiesel/2,5-dimethylfuran and biodiesel/ethanol," Energy, Elsevier, vol. 148(C), pages 824-838.
- Soloiu, Valentin & Gaubert, Remi & Moncada, Jose & Wiley, Justin & Williams, Johnnie & Harp, Spencer & Ilie, Marcel & Molina, Gustavo & Mothershed, David, 2019. "Reactivity controlled compression ignition and low temperature combustion of Fischer-Tropsch Fuel Blended with n-butanol," Renewable Energy, Elsevier, vol. 134(C), pages 1173-1189.
- Park, Su Han & Yoon, Seung Hyun & Lee, Chang Sik, 2014. "Bioethanol and gasoline premixing effect on combustion and emission characteristics in biodiesel dual-fuel combustion engine," Applied Energy, Elsevier, vol. 135(C), pages 286-298.
- Qian, Yong & Chen, Feier & Zhang, Yahui & Tao, Wencao & Han, Dong & Lu, Xingcai, 2019. "Combustion and regulated/unregulated emissions of a direct injection spark ignition engine fueled with C3-C5 alcohol/gasoline surrogate blends," Energy, Elsevier, vol. 174(C), pages 779-791.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Fırat, Müjdat & Melih Şenocak, Şafak & Okcu, Mutlu & Varol, Yasin & Altun, Şehmus, 2023. "Ozone-assisted combustion and emission control in RCCI engines: A comprehensive study," Energy, Elsevier, vol. 284(C).
- Xu, Guangfu & Duan, Huiquan & Cai, Yikang & Li, Yaopeng & Jia, Ming, 2023. "Potential of the reverse-reactivity controlled compression ignition (R-RCCI) combustion for maintaining ultra-low emissions and enhanced thermal efficiency," Energy, Elsevier, vol. 280(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhen, Xudong & Wang, Yang & Liu, Daming, 2020. "Bio-butanol as a new generation of clean alternative fuel for SI (spark ignition) and CI (compression ignition) engines," Renewable Energy, Elsevier, vol. 147(P1), pages 2494-2521.
- Jacek Caban & Jan Vrabel & Dorota Górnicka & Radosław Nowak & Maciej Jankiewicz & Jonas Matijošius & Marek Palka, 2023. "Overview of Energy Harvesting Technologies Used in Road Vehicles," Energies, MDPI, vol. 16(9), pages 1-32, April.
- Zhao, Wenbin & Mi, Shijie & Wu, Haoqing & Zhang, Yaoyuan & He, Zhuoyao & Qian, Yong & Lu, Xingcai, 2022. "Towards a comprehensive understanding of mode transition between biodiesel-biobutanol dual-fuel ICCI low temperature combustion and conventional CI combustion - Part ΙΙ: A system optimization at low l," Energy, Elsevier, vol. 241(C).
- Rami Y. Dahham & Haiqiao Wei & Jiaying Pan, 2022. "Improving Thermal Efficiency of Internal Combustion Engines: Recent Progress and Remaining Challenges," Energies, MDPI, vol. 15(17), pages 1-60, August.
- Liu, Junheng & Wu, Pengcheng & Ji, Qian & Sun, Ping & Wang, Pan & Meng, Zhongwei & Ma, Hongjie, 2022. "Experimental study on effects of pilot injection strategy on combustion and emission characteristics of diesel/methanol dual-fuel engine under low load," Energy, Elsevier, vol. 247(C).
- Soriano, J.A. & García-Contreras, R. & Gómez, A. & Mata, C., 2019. "Comparative study of the effect of a new renewable paraffinic fuel on the combustion process of a light-duty diesel engine," Energy, Elsevier, vol. 189(C).
- Zhao, Wenbin & Li, Zilong & Huang, Guan & Zhang, Yaoyuan & Qian, Yong & Lu, Xingcai, 2020. "Experimental investigation of direct injection dual fuel of n-butanol and biodiesel on Intelligent Charge Compression Ignition (ICCI) Combustion mode," Applied Energy, Elsevier, vol. 266(C).
- Pan, Suozhu & Cai, Kai & Cai, Min & Du, Chenbo & Li, Xin & Han, Weiqiang & Wang, Xin & Liu, Daming & Wei, Jiangjun & Fang, Jia & Bao, Xiuchao, 2021. "Experimental study on the cyclic variations of ethanol/diesel reactivity controlled compression ignition (RCCI) combustion in a heavy-duty diesel engine," Energy, Elsevier, vol. 237(C).
- Ghadikolaei, Meisam Ahmadi & Wong, Pak Kin & Cheung, Chun Shun & Ning, Zhi & Yung, Ka-Fu & Zhao, Jing & Gali, Nirmal Kumar & Berenjestanaki, Alireza Valipour, 2021. "Impact of lower and higher alcohols on the physicochemical properties of particulate matter from diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
- Guirong Wu & Jun Cong Ge & Nag Jung Choi, 2021. "Effect of Ethanol Additives on Combustion and Emissions of a Diesel Engine Fueled by Palm Oil Biodiesel at Idling Speed," Energies, MDPI, vol. 14(5), pages 1-12, March.
- Biswas, Srijit & Kakati, Dipankar & Chakraborti, Prasun & Banerjee, Rahul, 2022. "Performance-emission-stability mapping of CI engine in RCCI-PCCI modes under varying ethanol and CNG induced reactivity profiles: A comparative study through experimental and optimization perspectives," Energy, Elsevier, vol. 254(PB).
- Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
- Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Lee, P.S. & Chua, K.J.E. & Chou, S.K., 2013. "Combustion performance and emission characteristics study of pine oil in a diesel engine," Energy, Elsevier, vol. 57(C), pages 344-351.
- Wong, Ka In & Wong, Pak Kin & Cheung, Chun Shun & Vong, Chi Man, 2013. "Modeling and optimization of biodiesel engine performance using advanced machine learning methods," Energy, Elsevier, vol. 55(C), pages 519-528.
- Luo, Sai & Xu, JingBo & Wang, Chen & Ji, Jie, 2023. "Experimental study of flame spread behavior and heat transfer mechanism over n-butanol fuel in trays of different widths," Energy, Elsevier, vol. 282(C).
- Zha, Yunfei & He, Shunquan & Meng, Xianfeng & Zuo, Hongyan & Zhao, Xiaohuan, 2023. "Heat dissipation performance research between drop contact and immersion contact of lithium-ion battery cooling," Energy, Elsevier, vol. 279(C).
- Zhao, Rui & Liu, Dong, 2022. "Temperature dependence of chemical effects of ethanol and dimethyl ether mixing on benzene and PAHs formation in ethylene counter-flow diffusion flames," Energy, Elsevier, vol. 257(C).
- Seifi, Mohammad Reza & Desideri, Umberto & Ghorbani, Zahra & Antonelli, Marco & Frigo, Stefano & Hassan-Beygi, Seyed Reza & Ghobadian, Barat, 2019. "Statistical evaluation of the effect of water percentage in water-diesel emulsion on the engine performance and exhaust emission parameters," Energy, Elsevier, vol. 180(C), pages 797-806.
- Hoseinpour, Marziyeh & Sadrnia, Hassan & Tabasizadeh, Mohammad & Ghobadian, Barat, 2017. "Energy and exergy analyses of a diesel engine fueled with diesel, biodiesel-diesel blend and gasoline fumigation," Energy, Elsevier, vol. 141(C), pages 2408-2420.
- Liu, Yang & Cheng, Xiaobei & Qin, Longjiang & Wang, Xin & Yao, Junjie & Wu, Hui, 2020. "Experimental investigation on soot formation characteristics of n-heptane/butanol isomers blends in laminar diffusion flames," Energy, Elsevier, vol. 211(C).
More about this item
Keywords
Dual direct injection; RCCI engine; Ethanol; Combustion and emissions;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:255:y:2022:i:c:s0360544222014591. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.