Heat rejection pressure optimization for a carbon dioxide split system: An experimental study
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Sarkar, Jahar, 2008. "Optimization of ejector-expansion transcritical CO2 heat pump cycle," Energy, Elsevier, vol. 33(9), pages 1399-1406.
- Yang, Jun Lan & Ma, Yi Tai & Li, Min Xia & Guan, Hai Qing, 2005. "Exergy analysis of transcritical carbon dioxide refrigeration cycle with an expander," Energy, Elsevier, vol. 30(7), pages 1162-1175.
- Yokoyama, Ryohei & Shimizu, Takeshi & Ito, Koichi & Takemura, Kazuhisa, 2007. "Influence of ambient temperatures on performance of a CO2 heat pump water heating system," Energy, Elsevier, vol. 32(4), pages 388-398.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hu, Bin & Li, Yaoyu & Cao, Feng & Xing, Ziwen, 2015. "Extremum seeking control of COP optimization for air-source transcritical CO2 heat pump water heater system," Applied Energy, Elsevier, vol. 147(C), pages 361-372.
- Austin, Brian T. & Sumathy, K., 2011. "Transcritical carbon dioxide heat pump systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4013-4029.
- Yu, Binbin & Yang, Jingye & Wang, Dandong & Shi, Junye & Chen, Jiangping, 2019. "An updated review of recent advances on modified technologies in transcritical CO2 refrigeration cycle," Energy, Elsevier, vol. 189(C).
- Aprea, C. & Greco, A. & Maiorino, A., 2012. "An experimental evaluation of the greenhouse effect in the substitution of R134a with CO2," Energy, Elsevier, vol. 45(1), pages 753-761.
- Wang, Wenyi & Zhao, Zhongfan & Zhou, Qun & Qiao, Yiyuan & Cao, Feng, 2021. "Model predictive control for the operation of a transcritical CO2 air source heat pump water heater," Applied Energy, Elsevier, vol. 300(C).
- Hongzeng Ji & Jinchen Pei & Jingyang Cai & Chen Ding & Fen Guo & Yichun Wang, 2023. "Review of Recent Advances in Transcritical CO 2 Heat Pump and Refrigeration Cycles and Their Development in the Vehicle Field," Energies, MDPI, vol. 16(10), pages 1-21, May.
- Alphonsus, Ephrem Ryan & Abdullah, Mohammad Omar, 2016. "A review on the applications of programmable logic controllers (PLCs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1185-1205.
- Zhongkai Wu & Feifei Bi & Jiyou Fei & Zecan Zheng & Yulong Song & Feng Cao, 2023. "The Collaborative Optimization of the Discharge Pressure and Heat Recovery Rate in a Transcritical CO 2 Heat Pump Used in Extremely Low Temperature Environment," Energies, MDPI, vol. 16(4), pages 1-16, February.
- Ohkura, Masashi & Yokoyama, Ryohei & Nakamata, Takuya & Wakui, Tetsuya, 2015. "Numerical analysis on performance enhancement of a CO2 heat pump water heating system by extracting tepid water," Energy, Elsevier, vol. 87(C), pages 435-447.
- Chung, Hyun Joon & Baek, Changhyun & Kang, Hoon & Kim, Dongwoo & Kim, Yongchan, 2018. "Performance evaluation of a gas injection CO2 heat pump according to operating parameters in extreme heating and cooling conditions," Energy, Elsevier, vol. 154(C), pages 337-345.
- Aprea, Ciro & Maiorino, Angelo & Mastrullo, Rita, 2011. "Change in energy performance as a result of a R422D retrofit: An experimental analysis for a vapor compression refrigeration plant for a walk-in cooler," Applied Energy, Elsevier, vol. 88(12), pages 4742-4748.
- Yu, Binbin & Yang, Jingye & Wang, Dandong & Shi, Junye & Guo, Zhikai & Chen, Jiangping, 2019. "Experimental energetic analysis of CO2/R41 blends in automobile air-conditioning and heat pump systems," Applied Energy, Elsevier, vol. 239(C), pages 1142-1153.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xu, Xiao Xiao & Chen, Guang Ming & Tang, Li Ming & Zhu, Zhi Jiang, 2012. "Experimental investigation on performance of transcritical CO2 heat pump system with ejector under optimum high-side pressure," Energy, Elsevier, vol. 44(1), pages 870-877.
- Yang, Jun Lan & Ma, Yi Tai & Li, Min Xia & Hua, Jun, 2010. "Modeling and simulating the transcritical CO2 heat pump system," Energy, Elsevier, vol. 35(12), pages 4812-4818.
- Yari, Mortaza & Mahmoudi, S.M.S., 2011. "Thermodynamic analysis and optimization of novel ejector-expansion TRCC (transcritical CO2) cascade refrigeration cycles (Novel transcritical CO2 cycle)," Energy, Elsevier, vol. 36(12), pages 6839-6850.
- Austin, Brian T. & Sumathy, K., 2011. "Transcritical carbon dioxide heat pump systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4013-4029.
- Zeng, Min-Qiang & Zheng, Qiu-Yun & Zhang, Xue-Lai & Mo, Fan-Yang & Zhang, Xin-Rong, 2022. "Thermodynamic analysis of a novel multi-target temperature transcritical CO2 ejector-expansion refrigeration cycle with vapor-injection," Energy, Elsevier, vol. 259(C).
- Yari, Mortaza & Mehr, A.S. & Mahmoudi, S.M.S., 2013. "Thermodynamic analysis and optimization of a novel dual-evaporator system powered by electrical and solar energy sources," Energy, Elsevier, vol. 61(C), pages 646-656.
- Yari, M. & Mehr, A.S. & Mahmoudi, S.M.S., 2013. "Simulation study of the combination of absorption refrigeration and ejector-expansion systems," Renewable Energy, Elsevier, vol. 60(C), pages 370-381.
- Yu, Jianlin & Tian, Gaolei & Xu, Zong, 2009. "Exergy analysis of Joule–Thomson cryogenic refrigeration cycle with an ejector," Energy, Elsevier, vol. 34(11), pages 1864-1869.
- Hu, Bin & Li, Yaoyu & Cao, Feng & Xing, Ziwen, 2015. "Extremum seeking control of COP optimization for air-source transcritical CO2 heat pump water heater system," Applied Energy, Elsevier, vol. 147(C), pages 361-372.
- Mastrowski, Mikolaj & Smolka, Jacek & Hafner, Armin & Haida, Michal & Palacz, Michal & Banasiak, Krzysztof, 2019. "Experimental study of the heat transfer problem in expansion devices in CO2 refrigeration systems," Energy, Elsevier, vol. 173(C), pages 586-597.
- Lo Basso, Gianluigi & de Santoli, Livio & Paiolo, Romano & Losi, Claudio, 2021. "The potential role of trans-critical CO2 heat pumps within a solar cooling system for building services: The hybridised system energy analysis by a dynamic simulation model," Renewable Energy, Elsevier, vol. 164(C), pages 472-490.
- Michal Haida & Rafal Fingas & Wojciech Szwajnoch & Jacek Smolka & Michal Palacz & Jakub Bodys & Andrzej J. Nowak, 2019. "An Object-Oriented R744 Two-Phase Ejector Reduced-Order Model for Dynamic Simulations," Energies, MDPI, vol. 12(7), pages 1-24, April.
- Xu, Xiao Xiao & Liu, Chao & Fu, Xiang & Gao, Hong & Li, Yourong, 2015. "Energy and exergy analyses of a modified combined cooling, heating, and power system using supercritical CO2," Energy, Elsevier, vol. 86(C), pages 414-422.
- Frank Bruno & Martin Belusko & Edward Halawa, 2019. "CO 2 Refrigeration and Heat Pump Systems—A Comprehensive Review," Energies, MDPI, vol. 12(15), pages 1-39, August.
- Artur Bieniek & Jan Kuchmacz & Karol Sztekler & Lukasz Mika & Ewelina Radomska, 2021. "A New Method of Regulating the Cooling Capacity of a Cooling System with CO 2," Energies, MDPI, vol. 14(7), pages 1-18, March.
- Bodys, Jakub & Smolka, Jacek & Palacz, Michal & Haida, Michal & Banasiak, Krzysztof & Nowak, Andrzej J. & Hafner, Armin, 2016. "Performance of fixed geometry ejectors with a swirl motion installed in a multi-ejector module of a CO2 refrigeration system," Energy, Elsevier, vol. 117(P2), pages 620-631.
- Fan Feng & Ze Zhang & Xiufang Liu & Changhai Liu & Yu Hou, 2020. "The Influence of Internal Heat Exchanger on the Performance of Transcritical CO 2 Water Source Heat Pump Water Heater," Energies, MDPI, vol. 13(7), pages 1-14, April.
- Abbas Aghagoli & Mikhail Sorin & Mohammed Khennich, 2022. "Exergy Efficiency and COP Improvement of a CO 2 Transcritical Heat Pump System by Replacing an Expansion Valve with a Tesla Turbine," Energies, MDPI, vol. 15(14), pages 1-16, July.
- Ma, Yitai & Liu, Zhongyan & Tian, Hua, 2013. "A review of transcritical carbon dioxide heat pump and refrigeration cycles," Energy, Elsevier, vol. 55(C), pages 156-172.
- Guo, J.J. & Wu, J.Y. & Wang, R.Z. & Li, S., 2011. "Experimental research and operation optimization of an air-source heat pump water heater," Applied Energy, Elsevier, vol. 88(11), pages 4128-4138.
More about this item
Keywords
Air conditioning Experimentation Model Optimization R744 Transcritical cycle;JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:86:y:2009:i:11:p:2373-2380. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.