IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v238y2019icp311-319.html
   My bibliography  Save this article

An efficient approach to separate CO2 using supersonic flows for carbon capture and storage

Author

Listed:
  • Wen, Chuang
  • Karvounis, Nikolas
  • Walther, Jens Honore
  • Yan, Yuying
  • Feng, Yuqing
  • Yang, Yan

Abstract

The mitigation of CO2 emissions is an effective measure to solve the climate change issue. In the present study, we propose an alternative approach for CO2 capture by employing supersonic flows. For this purpose, we first develop a computational fluid dynamics (CFD) model to predict the CO2 condensing flow in a supersonic nozzle. Adding two transport equations to describe the liquid fraction and droplet number, the detailed numerical model can describe the heat and mass transfer characteristics during the CO2 phase change process under the supersonic expansion conditions. A comparative study is performed to evaluate the effect of CO2 condensation using the condensation model and dry gas assumption. The results show that the developed CFD model predicts accurately the distribution of the static temperature contrary to the dry gas assumption. Furthermore, the condensing flow model predicts a CO2 liquid fraction up to 18.6% of the total mass, which leads to the release of the latent heat to the vapour phase. The investigation performed in this study suggests that the CO2 condensation in supersonic flows provides an efficient and eco-friendly way to mitigate the CO2 emissions to the environment.

Suggested Citation

  • Wen, Chuang & Karvounis, Nikolas & Walther, Jens Honore & Yan, Yuying & Feng, Yuqing & Yang, Yan, 2019. "An efficient approach to separate CO2 using supersonic flows for carbon capture and storage," Applied Energy, Elsevier, vol. 238(C), pages 311-319.
  • Handle: RePEc:eee:appene:v:238:y:2019:i:c:p:311-319
    DOI: 10.1016/j.apenergy.2019.01.062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919300625
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.01.062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Liang & Ezekiel, Justin & Li, Dexiang & Pei, Jingjing & Ren, Shaoran, 2014. "Potential assessment of CO2 injection for heat mining and geological storage in geothermal reservoirs of China," Applied Energy, Elsevier, vol. 122(C), pages 237-246.
    2. Mondal, Monoj Kumar & Balsora, Hemant Kumar & Varshney, Prachi, 2012. "Progress and trends in CO2 capture/separation technologies: A review," Energy, Elsevier, vol. 46(1), pages 431-441.
    3. Ariafar, Kavous & Buttsworth, David & Al-Doori, Ghassan & Malpress, Ray, 2015. "Effect of mixing on the performance of wet steam ejectors," Energy, Elsevier, vol. 93(P2), pages 2030-2041.
    4. Chu, Fengming & Yang, Lijun & Du, Xiaoze & Yang, Yongping, 2017. "Mass transfer and energy consumption for CO2 absorption by ammonia solution in bubble column," Applied Energy, Elsevier, vol. 190(C), pages 1068-1080.
    5. Yang, Yan & Wen, Chuang & Wang, Shuli & Feng, Yuqing, 2014. "Theoretical and numerical analysis on pressure recovery of supersonic separators for natural gas dehydration," Applied Energy, Elsevier, vol. 132(C), pages 248-253.
    6. Zhao, Ruikai & Zhao, Li & Deng, Shuai & Song, Chunfeng & He, Junnan & Shao, Yawei & Li, Shuangjun, 2017. "A comparative study on CO2 capture performance of vacuum-pressure swing adsorption and pressure-temperature swing adsorption based on carbon pump cycle," Energy, Elsevier, vol. 137(C), pages 495-509.
    7. Görke, R.H. & Hu, W. & Dunstan, M.T. & Dennis, J.S. & Scott, S.A., 2018. "Exploration of the material property space for chemical looping air separation applied to carbon capture and storage," Applied Energy, Elsevier, vol. 212(C), pages 478-488.
    8. Yousef, Ahmed M. & El-Maghlany, Wael M. & Eldrainy, Yehia A. & Attia, Abdelhamid, 2018. "New approach for biogas purification using cryogenic separation and distillation process for CO2 capture," Energy, Elsevier, vol. 156(C), pages 328-351.
    9. Roussanaly, S. & Aasen, A. & Anantharaman, R. & Danielsen, B. & Jakobsen, J. & Heme-De-Lacotte, L. & Neji, G. & Sødal, A. & Wahl, P.E. & Vrana, T.K. & Dreux, R., 2019. "Offshore power generation with carbon capture and storage to decarbonise mainland electricity and offshore oil and gas installations: A techno-economic analysis," Applied Energy, Elsevier, vol. 233, pages 478-494.
    10. Kim, Tae Hong & Cho, Jinhyung & Lee, Kun Sang, 2017. "Evaluation of CO2 injection in shale gas reservoirs with multi-component transport and geomechanical effects," Applied Energy, Elsevier, vol. 190(C), pages 1195-1206.
    11. Zhang, Zhien & Cai, Jianchao & Chen, Feng & Li, Hao & Zhang, Wenxiang & Qi, Wenjie, 2018. "Progress in enhancement of CO2 absorption by nanofluids: A mini review of mechanisms and current status," Renewable Energy, Elsevier, vol. 118(C), pages 527-535.
    12. Medrano, J.A. & Potdar, I. & Melendez, J. & Spallina, V. & Pacheco-Tanaka, D.A. & van Sint Annaland, M. & Gallucci, F., 2018. "The membrane-assisted chemical looping reforming concept for efficient H2 production with inherent CO2 capture: Experimental demonstration and model validation," Applied Energy, Elsevier, vol. 215(C), pages 75-86.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Fuhuan & Xie, Heping & Liu, Tao & Wu, Yifan & Chen, Bin, 2020. "Highly dispersed CuFe-nitrogen active sites electrode for synergistic electrochemical CO2 reduction at low overpotential," Applied Energy, Elsevier, vol. 269(C).
    2. Yang, Yan & Karvounis, Nikolas & Walther, Jens Honore & Ding, Hongbing & Wen, Chuang, 2021. "Effect of area ratio of the primary nozzle on steam ejector performance considering nonequilibrium condensations," Energy, Elsevier, vol. 237(C).
    3. Chen, Jianan & Li, Anna & Huang, Zhu & Jiang, Wenming & Xi, Guang, 2023. "Non-equilibrium condensation in flue gas and migration trajectory of CO2 droplets in a supersonic separator," Energy, Elsevier, vol. 276(C).
    4. Zhang, Guojie & Li, Yunpeng & Jin, Zunlong & Dykas, Sławomir & Cai, Xiaoshu, 2024. "A novel carbon dioxide capture technology (CCT) based on non-equilibrium condensation characteristics: Numerical modelling, nozzle design and structure optimization," Energy, Elsevier, vol. 286(C).
    5. Haibing Liu & Serhat Yüksel & Hasan Dinçer, 2020. "Analyzing the Criteria of Efficient Carbon Capture and Separation Technologies for Sustainable Clean Energy Usage," Energies, MDPI, vol. 13(10), pages 1-12, May.
    6. Bian, Jiang & Cao, Xuewen & Teng, Lin & Sun, Yuan & Gao, Song, 2019. "Effects of inlet parameters on the supersonic condensation and swirling characteristics of binary natural gas mixture," Energy, Elsevier, vol. 188(C).
    7. Jakub T. Hołaj-Krzak & Anita Konieczna & Kinga Borek & Dorota Gryszkiewicz-Zalega & Ewa Sitko & Marek Urbaniak & Barbara Dybek & Dorota Anders & Jan Szymenderski & Adam Koniuszy & Grzegorz Wałowski, 2024. "Goat Manure Potential as a Substrate for Biomethane Production—An Experiment for Photofermentation," Energies, MDPI, vol. 17(16), pages 1-29, August.
    8. Yang, Yan & Zhu, Xiaowei & Yan, Yuying & Ding, Hongbing & Wen, Chuang, 2019. "Performance of supersonic steam ejectors considering the nonequilibrium condensation phenomenon for efficient energy utilisation," Applied Energy, Elsevier, vol. 242(C), pages 157-167.
    9. Wen, Chuang & Li, Bo & Ding, Hongbing & Akrami, Mohammad & Zhang, Haoran & Yang, Yan, 2022. "Thermodynamics analysis of CO2 condensation in supersonic flows for the potential of clean offshore natural gas processing," Applied Energy, Elsevier, vol. 310(C).
    10. Zou, Aihong & Zeng, Yupei & Luo, Ercang, 2023. "New generation hydrogen liquefaction technology by transonic two-phase expander," Energy, Elsevier, vol. 272(C).
    11. Wen, Chuang & Gong, Liang & Ding, Hongbing & Yang, Yan, 2020. "Steam ejector performance considering phase transition for multi-effect distillation with thermal vapour compression (MED-TVC) desalination system," Applied Energy, Elsevier, vol. 279(C).
    12. Aliabadi, Mohammad Ali Faghih & Lakzian, Esmail & Khazaei, Iman & Jahangiri, Ali, 2020. "A comprehensive investigation of finding the best location for hot steam injection into the wet steam turbine blade cascade," Energy, Elsevier, vol. 190(C).
    13. Yan Yang & Haoping Peng & Chuang Wen, 2019. "Sand Transport and Deposition Behaviour in Subsea Pipelines for Flow Assurance," Energies, MDPI, vol. 12(21), pages 1-12, October.
    14. Ding, Hongbing & Zhang, Yu & Dong, Yuanyuan & Wen, Chuang & Yang, Yan, 2023. "High-pressure supersonic carbon dioxide (CO2) separation benefiting carbon capture, utilisation and storage (CCUS) technology," Applied Energy, Elsevier, vol. 339(C).
    15. Y., Nandakishora & Sahoo, Ranjit K. & S., Murugan & Gu, Sai, 2023. "4E analysis of the cryogenic CO2 separation process integrated with waste heat recovery," Energy, Elsevier, vol. 278(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Hongbing & Zhang, Yu & Dong, Yuanyuan & Wen, Chuang & Yang, Yan, 2023. "High-pressure supersonic carbon dioxide (CO2) separation benefiting carbon capture, utilisation and storage (CCUS) technology," Applied Energy, Elsevier, vol. 339(C).
    2. Chen, Jianan & Huang, Zhu, 2022. "Spontaneous condensation of carbon dioxide in flue gas at supersonic state," Energy, Elsevier, vol. 254(PC).
    3. Alexander García-Mariaca & Eva Llera-Sastresa, 2021. "Review on Carbon Capture in ICE Driven Transport," Energies, MDPI, vol. 14(21), pages 1-30, October.
    4. Zhang, Guojie & Li, Yunpeng & Jin, Zunlong & Dykas, Sławomir & Cai, Xiaoshu, 2024. "A novel carbon dioxide capture technology (CCT) based on non-equilibrium condensation characteristics: Numerical modelling, nozzle design and structure optimization," Energy, Elsevier, vol. 286(C).
    5. Vogtenhuber, H. & Hofmann, R. & Helminger, F. & Schöny, G., 2018. "Process simulation of an efficient temperature swing adsorption concept for biogas upgrading," Energy, Elsevier, vol. 162(C), pages 200-209.
    6. Zhang, Zhien & Borhani, Tohid N. & Olabi, Abdul G., 2020. "Status and perspective of CO2 absorption process," Energy, Elsevier, vol. 205(C).
    7. Cui, Guodong & Pei, Shufeng & Rui, Zhenhua & Dou, Bin & Ning, Fulong & Wang, Jiaqiang, 2021. "Whole process analysis of geothermal exploitation and power generation from a depleted high-temperature gas reservoir by recycling CO2," Energy, Elsevier, vol. 217(C).
    8. Wang, Pengfei & Chen, Yiqi & Teng, Ying & An, Senyou & Li, Yun & Han, Meng & Yuan, Bao & Shen, Suling & Chen, Bin & Han, Songbai & Zhu, Jinlong & Zhu, Jianbo & Zhao, Yusheng & Xie, Heping, 2024. "A comprehensive review of hydrogen purification using a hydrate-based method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 194(C).
    9. Xu, Yin & Jin, Baosheng & Zhao, Yongling & Hu, Eric J. & Chen, Xiaole & Li, Xiaochuan, 2018. "Numerical simulation of aqueous ammonia-based CO2 absorption in a sprayer tower: An integrated model combining gas-liquid hydrodynamics and chemistry," Applied Energy, Elsevier, vol. 211(C), pages 318-333.
    10. Siti Aishah Mohd Rozaiddin & Kok Keong Lau, 2022. "A Review on Enhancing Solvent Regeneration in CO 2 Absorption Process Using Nanoparticles," Sustainability, MDPI, vol. 14(8), pages 1-33, April.
    11. Wen, Chuang & Li, Bo & Ding, Hongbing & Akrami, Mohammad & Zhang, Haoran & Yang, Yan, 2022. "Thermodynamics analysis of CO2 condensation in supersonic flows for the potential of clean offshore natural gas processing," Applied Energy, Elsevier, vol. 310(C).
    12. Hou, Lei & Elsworth, Derek & Zhang, Fengshou & Wang, Zhiyuan & Zhang, Jianbo, 2023. "Evaluation of proppant injection based on a data-driven approach integrating numerical and ensemble learning models," Energy, Elsevier, vol. 264(C).
    13. Weiqiang Song & Hongjian Ni & Ruihe Wang & Mengyun Zhao, 2017. "Wellbore flow field of coiled tubing drilling with supercritical carbon dioxide," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(4), pages 745-755, August.
    14. Narukulla, Ramesh & Chaturvedi, Krishna Raghav & Ojha, Umaprasana & Sharma, Tushar, 2022. "Carbon dioxide capturing evaluation of polyacryloyl hydrazide solutions via rheological analysis for carbon utilization applications," Energy, Elsevier, vol. 241(C).
    15. Tang, Yongzhi & Liu, Zhongliang & Li, Yanxia & Huang, Zhifeng & Chua, Kian Jon, 2021. "Study on fundamental link between mixing efficiency and entrainment performance of a steam ejector," Energy, Elsevier, vol. 215(PB).
    16. Nguyen, Phong & Carey, J. William & Viswanathan, Hari S. & Porter, Mark, 2018. "Effectiveness of supercritical-CO2 and N2 huff-and-puff methods of enhanced oil recovery in shale fracture networks using microfluidic experiments," Applied Energy, Elsevier, vol. 230(C), pages 160-174.
    17. Kittiwoot Sutthivirode & Tongchana Thongtip, 2022. "Experimental Determination of an Optimal Performance Map of a Steam Ejector Refrigeration System," Energies, MDPI, vol. 15(12), pages 1-19, June.
    18. Gu, Zhenhua & Zhang, Ling & Lu, Chunqiang & Qing, Shan & Li, Kongzhai, 2020. "Enhanced performance of copper ore oxygen carrier by red mud modification for chemical looping combustion," Applied Energy, Elsevier, vol. 277(C).
    19. Sanusi, Yinka S. & Mokheimer, Esmail M.A., 2019. "Thermo-economic optimization of hydrogen production in a membrane-SMR integrated to ITM-oxy-combustion plant using genetic algorithm," Applied Energy, Elsevier, vol. 235(C), pages 164-176.
    20. Jin, Lu & Hawthorne, Steven & Sorensen, James & Pekot, Lawrence & Kurz, Bethany & Smith, Steven & Heebink, Loreal & Herdegen, Volker & Bosshart, Nicholas & Torres, José & Dalkhaa, Chantsalmaa & Peters, 2017. "Advancing CO2 enhanced oil recovery and storage in unconventional oil play—Experimental studies on Bakken shales," Applied Energy, Elsevier, vol. 208(C), pages 171-183.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:238:y:2019:i:c:p:311-319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.