IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v264y2023ics0360544222030080.html
   My bibliography  Save this article

Evaluation of proppant injection based on a data-driven approach integrating numerical and ensemble learning models

Author

Listed:
  • Hou, Lei
  • Elsworth, Derek
  • Zhang, Fengshou
  • Wang, Zhiyuan
  • Zhang, Jianbo

Abstract

Injecting proppant to prop open fluid-driven fractures in subsurface reservoirs is one of the key missions of hydraulic fracturing. However, quantitative evaluation of the distribution of successfully propped fractures is limited due to the infeasibility of direct measurement. This work defines an indexing parameter for field practice to estimate the proportion of proppant-filled fractures in the reservoir – the proppant filling index (PFI). A new data-driven workflow, combining numerical models and an ensemble learning algorithm, is proposed and trained on field records of both screen-out and near screen-out cases and is then applied to predict PFIs for regular cases. The algorithm performance is promoted via variable importance measure (VIM) analyses and a backward elimination strategy. Four screen-out and twelve regular cases are presented to demonstrate the predicted PFI and highlight its potential utilizations. The new PFI and workflow evaluate the proppant injection quantitatively and reveal any mismatch between proppant injection and underground fractures, which may be essential for post-fracturing analyses and reservoir characterization to improve both oil & gas recovery, the sequestration of CO2, storage then recovery of H2 and the recovery of deep geothermal fluids as important components in enabling the energy transition.

Suggested Citation

  • Hou, Lei & Elsworth, Derek & Zhang, Fengshou & Wang, Zhiyuan & Zhang, Jianbo, 2023. "Evaluation of proppant injection based on a data-driven approach integrating numerical and ensemble learning models," Energy, Elsevier, vol. 264(C).
  • Handle: RePEc:eee:energy:v:264:y:2023:i:c:s0360544222030080
    DOI: 10.1016/j.energy.2022.126122
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222030080
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126122?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Liqiang & Chen, Yixin & Du, Juan & Liu, Pingli & Li, Nianyin & Luo, Zhifeng & Zhang, Chencheng & Huang, Fushan, 2019. "Experimental Study on a new type of self-propping fracturing technology," Energy, Elsevier, vol. 183(C), pages 249-261.
    2. Pandey, Anjanay & Sinha, A.S.K. & Chaturvedi, Krishna Raghav & Sharma, Tushar, 2021. "Experimental investigation on effect of reservoir conditions on stability and rheology of carbon dioxide foams of nonionic surfactant and polymer: Implications of carbon geo-storage," Energy, Elsevier, vol. 235(C).
    3. Sun, Fuqiang & Du, Shuheng & Zhao, Ya-Pu, 2022. "Fluctuation of fracturing curves indicates in-situ brittleness and reservoir fracturing characteristics in unconventional energy exploitation," Energy, Elsevier, vol. 252(C).
    4. Hou, Bing & Zhang, Qixing & Liu, Xing & Pang, Huiwen & Zeng, Yue, 2022. "Integration analysis of 3D fractures network reconstruction and frac hits response in shale wells," Energy, Elsevier, vol. 260(C).
    5. Pahari, Silabrata & Bhandakkar, Parth & Akbulut, Mustafa & Sang-Il Kwon, Joseph, 2021. "Optimal pumping schedule with high-viscosity gel for uniform distribution of proppant in unconventional reservoirs," Energy, Elsevier, vol. 216(C).
    6. Hou, Lei & Cheng, Yiyan & Wang, Xiaoyu & Ren, Jianhua & Geng, Xueyu, 2022. "Effect of slickwater-alternate-slurry injection on proppant transport at field scales: A hybrid approach combining experiments and deep learning," Energy, Elsevier, vol. 242(C).
    7. Kim, Tae Hong & Cho, Jinhyung & Lee, Kun Sang, 2017. "Evaluation of CO2 injection in shale gas reservoirs with multi-component transport and geomechanical effects," Applied Energy, Elsevier, vol. 190(C), pages 1195-1206.
    8. Singh, Harpreet, 2022. "Hydrogen storage in inactive horizontal shale gas wells: Techno-economic analysis for Haynesville shale," Applied Energy, Elsevier, vol. 313(C).
    9. Ma, Lin & Fauchille, Anne-Laure & Chandler, Michael R. & Dowey, Patrick & Taylor, Kevin G. & Mecklenburgh, Julian & Lee, Peter D., 2021. "In-situ synchrotron characterisation of fracture initiation and propagation in shales during indentation," Energy, Elsevier, vol. 215(PB).
    10. Chaturvedi, Krishna Raghav & Trivedi, Japan & Sharma, Tushar, 2020. "Single-step silica nanofluid for improved carbon dioxide flow and reduced formation damage in porous media for carbon utilization," Energy, Elsevier, vol. 197(C).
    11. Gérard Biau & Erwan Scornet, 2016. "A random forest guided tour," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 197-227, June.
    12. Gérard Biau & Erwan Scornet, 2016. "Rejoinder on: A random forest guided tour," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 264-268, June.
    13. Huang, Feifei & Pu, Chunsheng & Gu, Xiaoyu & Ye, Zhengqin & Khan, Nasir & An, Jie & Wu, Feipeng & Liu, Jing, 2021. "Study of a low-damage efficient-imbibition fracturing fluid without flowback used for low-pressure tight reservoirs," Energy, Elsevier, vol. 222(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hou, Lei & Elsworth, Derek & Zhang, Lei & Gong, Peibin & Liu, Honglei, 2024. "Recalibration of CO2 storage in shale: prospective and contingent storage resources, and capacity," Energy, Elsevier, vol. 290(C).
    2. Hou, Lei & Elsworth, Derek & Wang, Jintang & Zhou, Junping & Zhang, Fengshou, 2024. "Feasibility and prospects of symbiotic storage of CO2 and H2 in shale reservoirs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    3. Lv, Mingkun & Guo, Tiankui & Jia, Xuliang & Wen, Duwu & Chen, Ming & Wang, Yunpeng & Qu, Zhanqing & Ma, Daibing, 2024. "Study on the pump schedule impact in hydraulic fracturing of unconventional reservoirs on proppant transport law," Energy, Elsevier, vol. 286(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lv, Mingkun & Guo, Tiankui & Jia, Xuliang & Wen, Duwu & Chen, Ming & Wang, Yunpeng & Qu, Zhanqing & Ma, Daibing, 2024. "Study on the pump schedule impact in hydraulic fracturing of unconventional reservoirs on proppant transport law," Energy, Elsevier, vol. 286(C).
    2. Hou, Lei & Elsworth, Derek & Wang, Jintang & Zhou, Junping & Zhang, Fengshou, 2024. "Feasibility and prospects of symbiotic storage of CO2 and H2 in shale reservoirs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    3. Hou, Lei & Cheng, Yiyan & Wang, Xiaoyu & Ren, Jianhua & Geng, Xueyu, 2022. "Effect of slickwater-alternate-slurry injection on proppant transport at field scales: A hybrid approach combining experiments and deep learning," Energy, Elsevier, vol. 242(C).
    4. Ma, Zhikai & Huo, Qian & Wang, Wei & Zhang, Tao, 2023. "Voltage-temperature aware thermal runaway alarming framework for electric vehicles via deep learning with attention mechanism in time-frequency domain," Energy, Elsevier, vol. 278(C).
    5. Patrick Krennmair & Timo Schmid, 2022. "Flexible domain prediction using mixed effects random forests," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1865-1894, November.
    6. Jie Shi & Arno P. J. M. Siebes & Siamak Mehrkanoon, 2023. "TransCORALNet: A Two-Stream Transformer CORAL Networks for Supply Chain Credit Assessment Cold Start," Papers 2311.18749, arXiv.org.
    7. Bourdouxhe, Axel & Wibail, Lionel & Claessens, Hugues & Dufrêne, Marc, 2023. "Modeling potential natural vegetation: A new light on an old concept to guide nature conservation in fragmented and degraded landscapes," Ecological Modelling, Elsevier, vol. 481(C).
    8. Manuel J. García Rodríguez & Vicente Rodríguez Montequín & Francisco Ortega Fernández & Joaquín M. Villanueva Balsera, 2019. "Public Procurement Announcements in Spain: Regulations, Data Analysis, and Award Price Estimator Using Machine Learning," Complexity, Hindawi, vol. 2019, pages 1-20, November.
    9. Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023. "Targeting predictors in random forest regression," International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.
    10. Yiyi Huo & Yingying Fan & Fang Han, 2023. "On the adaptation of causal forests to manifold data," Papers 2311.16486, arXiv.org, revised Dec 2023.
    11. Akshita Bassi & Aditya Manchanda & Rajwinder Singh & Mahesh Patel, 2023. "A comparative study of machine learning algorithms for the prediction of compressive strength of rice husk ash-based concrete," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 209-238, August.
    12. Sachin Kumar & Zairu Nisha & Jagvinder Singh & Anuj Kumar Sharma, 2022. "Sensor network driven novel hybrid model based on feature selection and SVR to predict indoor temperature for energy consumption optimisation in smart buildings," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 3048-3061, December.
    13. Yong-Chao Su & Cheng-Yu Wu & Cheng-Hong Yang & Bo-Sheng Li & Sin-Hua Moi & Yu-Da Lin, 2021. "Machine Learning Data Imputation and Prediction of Foraging Group Size in a Kleptoparasitic Spider," Mathematics, MDPI, vol. 9(4), pages 1-16, February.
    14. Diogenis A. Kiziridis & Anna Mastrogianni & Magdalini Pleniou & Elpida Karadimou & Spyros Tsiftsis & Fotios Xystrakis & Ioannis Tsiripidis, 2022. "Acceleration and Relocation of Abandonment in a Mediterranean Mountainous Landscape: Drivers, Consequences, and Management Implications," Land, MDPI, vol. 11(3), pages 1-23, March.
    15. Escribano, Álvaro & Wang, Dandan, 2021. "Mixed random forest, cointegration, and forecasting gasoline prices," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1442-1462.
    16. Hunish Bansal & Basavraj Chinagundi & Prashant Singh Rana & Neeraj Kumar, 2022. "An Ensemble Machine Learning Technique for Detection of Abnormalities in Knee Movement Sustainability," Sustainability, MDPI, vol. 14(20), pages 1-16, October.
    17. Yigit Aydede & Jan Ditzen, 2022. "Identifying the regional drivers of influenza-like illness in Nova Scotia with dominance analysis," Papers 2212.06684, arXiv.org.
    18. Siyoon Kwon & Hyoseob Noh & Il Won Seo & Sung Hyun Jung & Donghae Baek, 2021. "Identification Framework of Contaminant Spill in Rivers Using Machine Learning with Breakthrough Curve Analysis," IJERPH, MDPI, vol. 18(3), pages 1-26, January.
    19. Sylwester Bejger, 2024. "Machine Learning in Cartel Screening—The Case of Parallel Pricing in a Fuel Wholesale Market," Energies, MDPI, vol. 17(16), pages 1-17, August.
    20. Lotfi Boudabsa & Damir Filipovi'c, 2022. "Ensemble learning for portfolio valuation and risk management," Papers 2204.05926, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:264:y:2023:i:c:s0360544222030080. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.