IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v310y2024ics0360544224030470.html
   My bibliography  Save this article

Model optimization and mechanism analysis of two-stage ejector considering nonequilibrium condensation

Author

Listed:
  • Han, Qingyang
  • Feng, Haodong
  • Zhang, Hailun
  • Wang, Lei
  • Xue, Haoyuan
  • Sun, Wenxu
  • Jia, Lei

Abstract

Two-stage ejectors are widely used in multi-effect distillation and refrigeration systems owing to their vacuum and pressurization capabilities. However, most studies on two-stage ejectors are based on the dry-gas hypothesis, which neglects the universal physical phenomenon of condensation. A wet-steam model of two-stage ejectors is established and compared to the dry-gas model in this paper. Simulation results indicate that the proposed wet-steam model more accurately describes the performance and complex flow field characteristics of the two-stage ejector. Moreover, the nonequilibrium condensation mechanism of the fluid within the two-stage ejector under variable conditions is revealed. The results show that as the two-stage main nozzle pressure increases from 300 kPa to 550 kPa, the liquid mass fraction increases, and the droplet nucleation rate of the two stages decreases by 14.17 % and 13.14 %. When the first-stage actuating pressure is increased, the first-stage fluid restricts the expansion state of the second-stage main jet core and weakens the vapor condensation in the region of the shock chain. Furthermore, the experimental results demonstrate that compared with the dry-gas model, the prediction error of entrainment ratio and the secondary flow obtained by the proposed model are reduced by 26.67 % and 43.04 %, respectively.

Suggested Citation

  • Han, Qingyang & Feng, Haodong & Zhang, Hailun & Wang, Lei & Xue, Haoyuan & Sun, Wenxu & Jia, Lei, 2024. "Model optimization and mechanism analysis of two-stage ejector considering nonequilibrium condensation," Energy, Elsevier, vol. 310(C).
  • Handle: RePEc:eee:energy:v:310:y:2024:i:c:s0360544224030470
    DOI: 10.1016/j.energy.2024.133271
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224030470
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133271?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:310:y:2024:i:c:s0360544224030470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.