A novel carbon dioxide capture technology (CCT) based on non-equilibrium condensation characteristics: Numerical modelling, nozzle design and structure optimization
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2023.129603
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Olabi, A.G. & Obaideen, Khaled & Elsaid, Khaled & Wilberforce, Tabbi & Sayed, Enas Taha & Maghrabie, Hussein M. & Abdelkareem, Mohammad Ali, 2022. "Assessment of the pre-combustion carbon capture contribution into sustainable development goals SDGs using novel indicators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
- Zhang, Guojie & Wang, Xiaogang & Jin, Zunlong & Dykas, Sławomir & Smołka, Krystian, 2023. "Numerical study of the loss and power prediction based on a modified non-equilibrium condensation model in a 200 MW industrial-scale steam turbine under different operation conditions," Energy, Elsevier, vol. 275(C).
- Zhao, Ruikai & Zhao, Li & Deng, Shuai & Song, Chunfeng & He, Junnan & Shao, Yawei & Li, Shuangjun, 2017. "A comparative study on CO2 capture performance of vacuum-pressure swing adsorption and pressure-temperature swing adsorption based on carbon pump cycle," Energy, Elsevier, vol. 137(C), pages 495-509.
- Chu, Fengming & Yang, Lijun & Du, Xiaoze & Yang, Yongping, 2017. "Mass transfer and energy consumption for CO2 absorption by ammonia solution in bubble column," Applied Energy, Elsevier, vol. 190(C), pages 1068-1080.
- Wen, Chuang & Karvounis, Nikolas & Walther, Jens Honore & Yan, Yuying & Feng, Yuqing & Yang, Yan, 2019. "An efficient approach to separate CO2 using supersonic flows for carbon capture and storage," Applied Energy, Elsevier, vol. 238(C), pages 311-319.
- Ding, Hongbing & Zhang, Yu & Dong, Yuanyuan & Wen, Chuang & Yang, Yan, 2023. "High-pressure supersonic carbon dioxide (CO2) separation benefiting carbon capture, utilisation and storage (CCUS) technology," Applied Energy, Elsevier, vol. 339(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hu, Pengfei & Liang, Qi & Fan, Tiantian & Wang, Yanhong & Li, Qi, 2024. "Investigation of heterogeneous condensation flow characteristics in the steam turbine based on homogeneous-heterogeneous condensation coupling model using OpenFOAM," Energy, Elsevier, vol. 296(C).
- Hosseini, Seyed Ali & Lakzian, Esmail & Zarei, Daryoush & Zare, Mehdi, 2024. "Design and optimization of slot number in supercooled vapor suction in steam turbine blades for reducing the wetness," Energy, Elsevier, vol. 301(C).
- Chen, Jianan & Gao, YuanYuan & Li, Anna & Huang, Zhu & Jiang, Wenming, 2024. "Virtual nozzle phenomenon caused by separation bubble during CO2 capture," Energy, Elsevier, vol. 303(C).
- Momeni Dolatabadi, Amir & Mottahedi, Hamid Reza & Faghih Aliabadi, Mohammad Ali & Saffari Pour, Mohsen & Wen, Chuang & Akrami, Mohammad, 2024. "Evaluating and optimizing of steam ejector performance considering heterogeneous condensation using machine learning framework," Energy, Elsevier, vol. 305(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ding, Hongbing & Dong, Yuanyuan & Zhang, Yu & Wen, Chuang & Yang, Yan, 2024. "Mass, energy and economic analysis of supersonic CO2 separation for carbon capture, utilization and storage (CCUS)," Applied Energy, Elsevier, vol. 373(C).
- Ding, Hongbing & Zhang, Yu & Dong, Yuanyuan & Wen, Chuang & Yang, Yan, 2023. "High-pressure supersonic carbon dioxide (CO2) separation benefiting carbon capture, utilisation and storage (CCUS) technology," Applied Energy, Elsevier, vol. 339(C).
- Wen, Chuang & Karvounis, Nikolas & Walther, Jens Honore & Yan, Yuying & Feng, Yuqing & Yang, Yan, 2019. "An efficient approach to separate CO2 using supersonic flows for carbon capture and storage," Applied Energy, Elsevier, vol. 238(C), pages 311-319.
- Zhang, Guojie & Yang, Yifan & Chen, Jiaheng & Jin, Zunlong & Dykas, Sławomir, 2024. "Numerical study of heterogeneous condensation in the de Laval nozzle to guide the compressor performance optimization in a compressed air energy storage system," Applied Energy, Elsevier, vol. 356(C).
- Zhang, Guojie & Wang, Xiaogang & Chen, Jiaheng & Tang, Songzhen & Smołka, Krystian & Majkut, Mirosław & Jin, Zunlong & Dykas, Sławomir, 2023. "Supersonic nozzle performance prediction considering the homogeneous-heterogeneous coupling spontaneous non-equilibrium condensation," Energy, Elsevier, vol. 284(C).
- Y., Nandakishora & Sahoo, Ranjit K. & S., Murugan & Gu, Sai, 2023. "4E analysis of the cryogenic CO2 separation process integrated with waste heat recovery," Energy, Elsevier, vol. 278(PA).
- Zhang, Guojie & Yang, Yifan & Chen, Jiaheng & Jin, Zunlong & Majkut, Mirosław & Smołka, Krystian & Dykas, Sławomir, 2023. "Effect of relative humidity on the nozzle performance in non-equilibrium condensing flows for improving the compressed air energy storage technology," Energy, Elsevier, vol. 280(C).
- Chen, Lei & Hu, Yanwei & Yang, Kai & Yan, Xinqing & Yu, Shuai & Yu, Jianliang & Chen, Shaoyun, 2023. "Fracture process characteristic study during fracture propagation of a CO2 transport network distribution pipeline," Energy, Elsevier, vol. 283(C).
- Qusay Abu-Afifeh & Michel Rahbeh & Aya Al-Afeshat & Saif Al-Omari & Tala Amer Qutishat & Ali Brezat & Ali Alkayed, 2023. "Dam Sustainability’s Interdependency with Climate Change and Dam Failure Drivers," Sustainability, MDPI, vol. 15(23), pages 1-19, November.
- Ahmed M. Nassef & Ahmed Handam, 2022. "Parameter Estimation-Based Slime Mold Algorithm of Photocatalytic Methane Reforming Process for Hydrogen Production," Sustainability, MDPI, vol. 14(5), pages 1-12, March.
- A. G. Olabi & Khaled Obaideen & Mohammad Ali Abdelkareem & Maryam Nooman AlMallahi & Nabila Shehata & Abdul Hai Alami & Ayman Mdallal & Asma Ali Murah Hassan & Enas Taha Sayed, 2023. "Wind Energy Contribution to the Sustainable Development Goals: Case Study on London Array," Sustainability, MDPI, vol. 15(5), pages 1-22, March.
- Wu, Chunxia & Sun, Yalong & Tang, Heng & Zhang, Shiwei & Yuan, Wei & Zhu, Likuan & Tang, Yong, 2024. "A review on the liquid cooling thermal management system of lithium-ion batteries," Applied Energy, Elsevier, vol. 375(C).
- Basem E. Elnaghi & M. N. Abelwhab & Ahmed M. Ismaiel & Reham H. Mohammed, 2023. "Solar Hydrogen Variable Speed Control of Induction Motor Based on Chaotic Billiards Optimization Technique," Energies, MDPI, vol. 16(3), pages 1-33, January.
- Haibing Liu & Serhat Yüksel & Hasan Dinçer, 2020. "Analyzing the Criteria of Efficient Carbon Capture and Separation Technologies for Sustainable Clean Energy Usage," Energies, MDPI, vol. 13(10), pages 1-12, May.
- Guo, Juncheng & Tan, Chaohuan & Li, Zhexu & Chen, Bo & Yang, Hanxin & Luo, Rongxiang & Gonzalez-Ayala, Julian & Hernández, A. Calvo, 2024. "New insights into energy conversion mechanism, optimal absorbent selection criteria, and operation strategies of absorption carbon capture systems," Energy, Elsevier, vol. 304(C).
- Li, Jichao & Han, Wei & Li, Peijing & Ma, Wenjing & Xue, Xiaodong & Jin, Hongguang, 2023. "High-efficiency power generation system with CO2 capture based on cascading coal gasification employing chemical recuperation," Energy, Elsevier, vol. 283(C).
- Qin, Xiang & Shen, Aoqi & Duan, Hongxin & Wang, Guanghui & Chen, Jiaheng & Tang, Songzhen & Wang, Dingbiao, 2024. "Experimental verification of the novel transcritical CO2 heat pump system and model evaluation method," Renewable Energy, Elsevier, vol. 222(C).
- Zhang, Xiaowen & Zhang, Xin & Liu, Helei & Li, Wensheng & Xiao, Min & Gao, Hongxia & Liang, Zhiwu, 2017. "Reduction of energy requirement of CO2 desorption from a rich CO2-loaded MEA solution by using solid acid catalysts," Applied Energy, Elsevier, vol. 202(C), pages 673-684.
- Wu, Xiaomei & Mao, Yuanhao & Fan, Huifeng & Sultan, Sayd & Yu, Yunsong & Zhang, Zaoxiao, 2023. "Investigation on the performance of EDA-based blended solvents for electrochemically mediated CO2 capture," Applied Energy, Elsevier, vol. 349(C).
- Jiang, L. & Gonzalez-Diaz, A. & Ling-Chin, J. & Roskilly, A.P. & Smallbone, A.J., 2019. "Post-combustion CO2 capture from a natural gas combined cycle power plant using activated carbon adsorption," Applied Energy, Elsevier, vol. 245(C), pages 1-15.
More about this item
Keywords
Non-equilibrium condensation; Real gas model; Droplet growth model; Surface tension model; Flow losses;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223029973. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.