IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223018868.html
   My bibliography  Save this article

Characterization of in-cylinder spatiotemporal flame and solid particle emissions for ethanol-gasoline blended in gasoline direct injection engines

Author

Listed:
  • Kim, Taehoon
  • Moon, Junghwan
  • Jeon, Joonho

Abstract

Stricter regulations for internal combustion engines have necessitated the inclusion of eco-friendly fuels with conventional ones to reduce gas and solid emissions. Gasoline direct injection (GDI) engines, however, have been found to produce more particle number and mass emissions than port fuel injection engines. To address this, bioethanol fuel has been selected as an additive eco-friendly fuel for gasoline, with the aim of reducing particle emissions. In this study, we quantitatively characterize in-cylinder spatiotemporal flame to feature combustion performance and particle emissions for ethanol fuel in the GDI combustion chamber. We examined three engine combustion modes differed in equivalence ratio and injection strategy to produce various combustion results to quantify combustion performance and particle emission characteristics. Using an eight-channel non-intrusive flame luminosity sensor in one cylinder, we measured the flame front and its propagation direction. At the tailpipe, we measured particulate emissions using an engine exhaust particle sizer and a micro soot sensor coupled with a catalytic stripper that removed semi-volatile compounds. Our study found that increasing ethanol fuel content for different combustion modes resulted in distinct combustion and flame development. The particle size distribution also showed different patterns at each combustion mode, depending on the ethanol content. Lean combustion modes yielded high diffusion flame intensity compared to stoichiometric combustion mode, which resulted in a larger amount of particle formation. The physical properties of ethanol fuel were found to predominantly determine the fuel-air mixture quality, combustion process, and flame development at each combustion mode. An increase in ethanol fuel content at lean-homogeneous mode resulted in higher diffusion flame intensity and larger particle emissions. Our comparative study of flame and solid particles for ethanol fuel content improves the understanding of in-cylinder combustion processes and their correlations.

Suggested Citation

  • Kim, Taehoon & Moon, Junghwan & Jeon, Joonho, 2023. "Characterization of in-cylinder spatiotemporal flame and solid particle emissions for ethanol-gasoline blended in gasoline direct injection engines," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223018868
    DOI: 10.1016/j.energy.2023.128492
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223018868
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128492?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cho, Jaeho & Si, Woosung & Jang, Wonwook & Jin, Dongyoung & Myung, Cha-Lee & Park, Simsoo, 2015. "Impact of intermediate ethanol blends on particulate matter emission from a spark ignition direct injection (SIDI) engine," Applied Energy, Elsevier, vol. 160(C), pages 592-602.
    2. Jeon, Joonho, 2020. "Spatiotemporal flame propagations, combustion and solid particle emissions from lean and stoichiometric gasoline direct injection engine operation," Energy, Elsevier, vol. 210(C).
    3. Park, Cheolwoong & Lee, Sunyoup & Yi, Uihyung, 2016. "Effects of engine operating conditions on particle emissions of lean-burn gasoline direct-injection engine," Energy, Elsevier, vol. 115(P1), pages 1148-1155.
    4. Catapano, Francesco & Di Iorio, Silvana & Magno, Agnese & Vaglieco, Bianca Maria, 2022. "Effect of fuel quality on combustion evolution and particle emissions from PFI and GDI engines fueled with gasoline, ethanol and blend, with focus on 10–23 nm particles," Energy, Elsevier, vol. 239(PB).
    5. Wang, Chongming & Xu, Hongming & Herreros, Jose Martin & Wang, Jianxin & Cracknell, Roger, 2014. "Impact of fuel and injection system on particle emissions from a GDI engine," Applied Energy, Elsevier, vol. 132(C), pages 178-191.
    6. Koupaie, Mohammadmohsen Moslemin & Cairns, Alasdair & Vafamehr, Hassan & Lanzanova, Thompson Diordinis Metzka, 2019. "A study of hydrous ethanol combustion in an optical central direct injection spark ignition engine," Applied Energy, Elsevier, vol. 237(C), pages 258-269.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qian, Yong & Li, Zilong & Yu, Liang & Wang, Xiaole & Lu, Xingcai, 2019. "Review of the state-of-the-art of particulate matter emissions from modern gasoline fueled engines," Applied Energy, Elsevier, vol. 238(C), pages 1269-1298.
    2. Jiang, Chenxu & Li, Zilong & Qian, Yong & Wang, Xiaole & Zhang, Yahui & Lu, Xingcai, 2018. "Influences of fuel injection strategies on combustion performance and regular/irregular emissions in a turbocharged gasoline direct injection engine: Commercial gasoline versus multi-components gasoli," Energy, Elsevier, vol. 157(C), pages 173-187.
    3. Mohsin Raza & Longfei Chen & Felix Leach & Shiting Ding, 2018. "A Review of Particulate Number (PN) Emissions from Gasoline Direct Injection (GDI) Engines and Their Control Techniques," Energies, MDPI, vol. 11(6), pages 1-26, June.
    4. Anbari Attar, Mohammadreza & Xu, Hongming, 2016. "Experimental investigation of impacts of engine hardware, operating parameters and combustion performance on particulate emissions in a DISI engine," Applied Energy, Elsevier, vol. 177(C), pages 703-715.
    5. Fan, Qinhao & Liu, Shang & Qi, Yunliang & Cai, Kaiyuan & Wang, Zhi, 2021. "Investigation into ethanol effects on combustion and particle number emissions in a spark-ignition to compression-ignition (SICI) engine," Energy, Elsevier, vol. 233(C).
    6. Shi, Lei & Ji, Changwei & Wang, Shuofeng & Su, Teng & Cong, Xiaoyu & Wang, Du & Tang, Chuanqi, 2019. "Effects of second injection timing on combustion characteristics of the spark ignition direct injection gasoline engines with dimethyl ether enrichment in the intake port," Energy, Elsevier, vol. 180(C), pages 10-18.
    7. Liu, Zengbin & Zhen, Xudong & Tian, Zhi & Liu, Daming & Wang, Yang, 2024. "Study on the effect of injection strategy on the combustion and emission characteristics of direct injection spark ignition bio-butanol engine," Energy, Elsevier, vol. 289(C).
    8. Jeon, Joonho, 2020. "Spatiotemporal flame propagations, combustion and solid particle emissions from lean and stoichiometric gasoline direct injection engine operation," Energy, Elsevier, vol. 210(C).
    9. Zhang, Bin & E, Jiaqiang & Gong, Jinke & Yuan, Wenhua & Zuo, Wei & Li, Yu & Fu, Jun, 2016. "Multidisciplinary design optimization of the diesel particulate filter in the composite regeneration process," Applied Energy, Elsevier, vol. 181(C), pages 14-28.
    10. Kangjin Kim & Wonyong Chung & Myungsoo Kim & Charyung Kim & Cha-Lee Myung & Simsoo Park, 2020. "Inspection of PN, CO 2 , and Regulated Gaseous Emissions Characteristics from a GDI Vehicle under Various Real-World Vehicle Test Modes," Energies, MDPI, vol. 13(10), pages 1-17, May.
    11. Muhamad Norkhizan Abdullah & Ahmad Fitri Yusop & Rizalman Mamat & Mohd Adnin Hamidi & Kumarasamy Sudhakar & Talal Yusaf, 2023. "Sustainable Biofuels from First Three Alcohol Families: A Critical Review," Energies, MDPI, vol. 16(2), pages 1-21, January.
    12. Gainey, Brian & Gohn, James & Hariharan, Deivanayagam & Rahimi-Boldaji, Mozhgan & Lawler, Benjamin, 2020. "Assessing the impact of injector included angle and piston geometry on thermally stratified compression ignition with wet ethanol," Applied Energy, Elsevier, vol. 262(C).
    13. Yu, Shenghao & Yin, Bifeng & Bi, Qinsheng & Chen, Chen & Jia, Hekun, 2021. "Experimental and numerical investigation on inner flow and spray characteristics of elliptical GDI injectors with large aspect ratio," Energy, Elsevier, vol. 224(C).
    14. Tara Larsson & Senthil Krishnan Mahendar & Anders Christiansen-Erlandsson & Ulf Olofsson, 2021. "The Effect of Pure Oxygenated Biofuels on Efficiency and Emissions in a Gasoline Optimised DISI Engine," Energies, MDPI, vol. 14(13), pages 1-24, June.
    15. Krishna, Addepalli S. & Mallikarjuna, J.M. & Kumar, Davinder, 2016. "Effect of engine parameters on in-cylinder flows in a two-stroke gasoline direct injection engine," Applied Energy, Elsevier, vol. 176(C), pages 282-294.
    16. Francesco Catapano & Silvana Di Iorio & Agnese Magno & Paolo Sementa & Bianca Maria Vaglieco, 2022. "Measurement of Sub-23 nm Particles Emitted from PFI/DI SI Engine Fueled with Oxygenated Fuels: A Comparison between Conventional and Novel Methodologies," Energies, MDPI, vol. 15(6), pages 1-14, March.
    17. Wang, Xin & Ge, Yunshan & Liu, Linlin & Peng, Zihang & Hao, Lijun & Yin, Hang & Ding, Yan & Wang, Junfang, 2015. "Evaluation on toxic reduction and fuel economy of a gasoline direct injection- (GDI-) powered passenger car fueled with methanol–gasoline blends with various substitution ratios," Applied Energy, Elsevier, vol. 157(C), pages 134-143.
    18. Roso, Vinícius Rückert & Santos, Nathália Duarte Souza Alvarenga & Valle, Ramon Molina & Alvarez, Carlos Eduardo Castilla & Monsalve-Serrano, Javier & García, Antonio, 2019. "Evaluation of a stratified prechamber ignition concept for vehicular applications in real world and standardized driving cycles," Applied Energy, Elsevier, vol. 254(C).
    19. Zhang, Bo & Sarathy, S. Mani, 2016. "Lifecycle optimized ethanol-gasoline blends for turbocharged engines," Applied Energy, Elsevier, vol. 181(C), pages 38-53.
    20. Liu, Zengbin & Zhen, Xudong & Geng, Jie & Tian, Zhi, 2024. "Effects of injection timing on mixture formation, combustion, and emission characteristics in a n-butanol direct injection spark ignition engine," Energy, Elsevier, vol. 295(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223018868. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.