IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v232y2018icp358-367.html
   My bibliography  Save this article

Design and rapid prototyping of a closed-loop control strategy of the injected mass for the reduction of CO2, combustion noise and pollutant emissions in diesel engines

Author

Listed:
  • Ferrari, A.
  • Novara, C.
  • Paolucci, E.
  • Vento, O.
  • Violante, M.
  • Zhang, T.

Abstract

A closed-loop strategy that is capable of controlling the fuel injected mass in the combustion chamber of a Common Rail diesel engine has been set up. The pressure time histories measured along the rail-to-injector pipe have been used to evaluate the instantaneous mass flow-rate entering the injector. This flow-rate has then been integrated between two time instants, and the thus calculated fuel mass has resulted to correlate well with the injected mass.

Suggested Citation

  • Ferrari, A. & Novara, C. & Paolucci, E. & Vento, O. & Violante, M. & Zhang, T., 2018. "Design and rapid prototyping of a closed-loop control strategy of the injected mass for the reduction of CO2, combustion noise and pollutant emissions in diesel engines," Applied Energy, Elsevier, vol. 232(C), pages 358-367.
  • Handle: RePEc:eee:appene:v:232:y:2018:i:c:p:358-367
    DOI: 10.1016/j.apenergy.2018.09.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918313357
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.09.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Qinghui & Hao, Zhiyong & Zheng, Xu & Yang, Wenying, 2017. "Characteristics and effect factors of pressure oscillation in multi-injection DI diesel engine at high-load conditions," Applied Energy, Elsevier, vol. 195(C), pages 52-66.
    2. Zhu, Dengting & Zheng, Xinqian, 2018. "A new asymmetric twin-scroll turbine with two wastegates for energy improvements in diesel engines," Applied Energy, Elsevier, vol. 223(C), pages 263-272.
    3. Millo, Federico & Arya, Pranav & Mallamo, Fabio, 2018. "Optimization of automotive diesel engine calibration using genetic algorithm techniques," Energy, Elsevier, vol. 158(C), pages 807-819.
    4. Leach, Felix & Ismail, Riyaz & Davy, Martin & Weall, Adam & Cooper, Brian, 2018. "The effect of a stepped lip piston design on performance and emissions from a high-speed diesel engine," Applied Energy, Elsevier, vol. 215(C), pages 679-689.
    5. Huang, Weidi & Wu, Zhijun & Gao, Ya & Zhang, Lin, 2015. "Effect of shock waves on the evolution of high-pressure fuel jets," Applied Energy, Elsevier, vol. 159(C), pages 442-448.
    6. Ferrari, Alessandro & Paolicelli, Federica & Pizzo, Pietro, 2015. "The new-generation of solenoid injectors equipped with pressure-balanced pilot valves for energy saving and dynamic response improvement," Applied Energy, Elsevier, vol. 151(C), pages 367-376.
    7. Moon, Seoksu & Huang, Weidi & Li, Zhilong & Wang, Jin, 2016. "End-of-injection fuel dribble of multi-hole diesel injector: Comprehensive investigation of phenomenon and discussion on control strategy," Applied Energy, Elsevier, vol. 179(C), pages 7-16.
    8. d’Ambrosio, S. & Ferrari, A., 2017. "Boot injection dynamics and parametrical analysis of boot shaped injections in low-temperature combustion diesel engines for the optimization of pollutant emissions and combustion noise," Energy, Elsevier, vol. 134(C), pages 420-437.
    9. Chen, Chia-Yang & Lee, Wen-Jhy & Wang, Lin-Chi & Chang, Yu-Cheng & Yang, Hsi-Hsien & Young, Li-Hao & Lu, Jau-Huai & Tsai, Ying I. & Cheng, Man-Ting & Mwangi, John Kennedy, 2017. "Impact of high soot-loaded and regenerated diesel particulate filters on the emissions of persistent organic pollutants from a diesel engine fueled with waste cooking oil-based biodiesel," Applied Energy, Elsevier, vol. 191(C), pages 35-43.
    10. Pos, Radboud & Wardle, Robert & Cracknell, Roger & Ganippa, Lionel, 2017. "Spatio-temporal evolution of diesel sprays at the early start of injection," Applied Energy, Elsevier, vol. 205(C), pages 391-398.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chaoqun Hu & Zhijun Wu & Alessandro Ferrari & Meng Ji & Jun Deng & Oscar Vento, 2024. "Numerical Study on Internal Flow and Cavitation Characteristics of GDI Injectors for Different Nozzle Orifice Geometries," Energies, MDPI, vol. 17(16), pages 1-21, August.
    2. Van Viet Pham & Duc Thiep Cao, 2019. "A Brief Review Of Technology Solutions On Fuel Injection System Of Diesel Engine To Increase The Power And Reduce Environmental Pollution," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 42(1), pages 1-9, January.
    3. Alessandro Ferrari & Paola Fresia & Massimo Rundo & Oscar Vento & Pietro Pizzo, 2022. "Experimental Measurement and Numerical Validation of the Flow Ripple in Internal Gear Pumps," Energies, MDPI, vol. 15(24), pages 1-15, December.
    4. Mariano Gallo & Mario Marinelli, 2020. "Sustainable Mobility: A Review of Possible Actions and Policies," Sustainability, MDPI, vol. 12(18), pages 1-39, September.
    5. Suprava Chakraborty & Nallapaneni Manoj Kumar & Arunkumar Jayakumar & Santanu Kumar Dash & Devaraj Elangovan, 2021. "Selected Aspects of Sustainable Mobility Reveals Implementable Approaches and Conceivable Actions," Sustainability, MDPI, vol. 13(22), pages 1-31, November.
    6. Gu, Yuanqi & Fan, Liyun & Lan, Qi & Wei, Yunpeng, 2023. "Experimental study on the transient supply consistency for a common rail pump based on impedance theory," Energy, Elsevier, vol. 283(C).
    7. Liu, Bingxin & Fei, Hongzi & Wang, Liuping & Fan, Liyun & Yang, Xiaotao, 2024. "Real-time estimation of fuel injection rate and injection volume in high-pressure common rail systems," Energy, Elsevier, vol. 298(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2021. "Combustion chamber modifications to improve diesel engine performance and reduce emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. Pos, Radboud & Wardle, Robert & Cracknell, Roger & Ganippa, Lionel, 2017. "Spatio-temporal evolution of diesel sprays at the early start of injection," Applied Energy, Elsevier, vol. 205(C), pages 391-398.
    3. Guardiola, C. & Pla, B. & Bares, P. & Barbier, A., 2018. "An analysis of the in-cylinder pressure resonance excitation in internal combustion engines," Applied Energy, Elsevier, vol. 228(C), pages 1272-1279.
    4. Pan, Jeng-Shyang & Hu, Pei & Chu, Shu-Chuan, 2021. "Binary fish migration optimization for solving unit commitment," Energy, Elsevier, vol. 226(C).
    5. Zhu, Dengting & Zheng, Xinqian, 2019. "Fuel consumption and emission characteristics in asymmetric twin-scroll turbocharged diesel engine with two exhaust gas recirculation circuits," Applied Energy, Elsevier, vol. 238(C), pages 985-995.
    6. Leach, Felix & Ismail, Riyaz & Davy, Martin, 2018. "Engine-out emissions from a modern high speed diesel engine – The importance of Nozzle Tip Protrusion," Applied Energy, Elsevier, vol. 226(C), pages 340-352.
    7. Boopathi, D. & Thiyagarajan, S. & Edwin Geo, V. & Madhankumar, S. & Gheith, R., 2018. "Effect of geraniol on performance, emission and combustion characteristics of CI engine fuelled with gutter oil obtained from different sources," Energy, Elsevier, vol. 157(C), pages 391-401.
    8. Song, Heping & Liu, Changpeng & Li, Yanfei & Wang, Zhi & Chen, Longfei & He, Xin & Wang, Jianxin, 2018. "An exploration of utilizing low-pressure diesel injection for natural gas dual-fuel low-temperature combustion," Energy, Elsevier, vol. 153(C), pages 248-255.
    9. Hwang, Joonsik & Bae, Choongsik & Patel, Chetankumar & Agarwal, Rashmi A. & Gupta, Tarun & Kumar Agarwal, Avinash, 2017. "Investigations on air-fuel mixing and flame characteristics of biodiesel fuels for diesel engine application," Applied Energy, Elsevier, vol. 206(C), pages 1203-1213.
    10. Federico Millo & Andrea Piano & Benedetta Peiretti Paradisi & Mario Rocco Marzano & Andrea Bianco & Francesco C. Pesce, 2020. "Development and Assessment of an Integrated 1D-3D CFD Codes Coupling Methodology for Diesel Engine Combustion Simulation and Optimization," Energies, MDPI, vol. 13(7), pages 1-21, April.
    11. Xinda Zhu & Manu Mannazhi & Natascia Palazzo & Per-Erik Bengtsson & Öivind Andersson, 2020. "High-Speed Imaging of Spray Formation and Combustion in an Optical Engine: Effects of Injector Aging and TPGME as a Fuel Additive," Energies, MDPI, vol. 13(12), pages 1-26, June.
    12. Zhang, Jun & Wong, Victor W. & Shuai, Shijin & Chen, Yu & Sappok, Alexander, 2018. "Quantitative estimation of the impact of ash accumulation on diesel particulate filter related fuel penalty for a typical modern on-road heavy-duty diesel engine," Applied Energy, Elsevier, vol. 229(C), pages 1010-1023.
    13. Pham, Quangkhai & Chang, Mengzhao & Kalwar, Ankur & Agarwal, Avinash Kumar & Park, Sungwook & Choi, Byungchul & Park, Suhan, 2023. "Macroscopic spray characteristics and internal structure studies of natural gas injection," Energy, Elsevier, vol. 263(PE).
    14. Weidi Huang & Huifeng Gong & Raditya Hendra Pratama & Seoksu Moon & Keiji Takagi & Zhili Chen, 2020. "Potential for Shock-Wave Generation at Diesel Engine Conditions and Its Influence on Spray Characteristics," Energies, MDPI, vol. 13(23), pages 1-19, December.
    15. Jena, Ashutosh & Singh, Akhilendra Pratap & Agarwal, Avinash Kumar, 2022. "Optical and computational investigations of the effect of Spray-Swirl interactions on autoignition and soot formation in a compression ignition engine fuelled by Diesel, dieseline and diesohol," Applied Energy, Elsevier, vol. 324(C).
    16. Xu Zheng & Nan Zhou & Quan Zhou & Yi Qiu & Ruijun Liu & Zhiyong Hao, 2020. "Experimental Investigation on the High-frequency Pressure Oscillation Characteristics of a Combustion Process in a DI Diesel Engine," Energies, MDPI, vol. 13(4), pages 1-25, February.
    17. Zhao, Xiaohuan & Liu, Fang & Wang, Chunhua, 2022. "Effects of different piston combustion chamber heights on heat transfer and energy conversion performance enhancement of a heavy-duty truck diesel engine," Energy, Elsevier, vol. 249(C).
    18. Pastor, José V. & García, Antonio & Micó, Carlos & Lewiski, Felipe & Vassallo, Alberto & Pesce, Francesco Concetto, 2021. "Effect of a novel piston geometry on the combustion process of a light-duty compression ignition engine: An optical analysis," Energy, Elsevier, vol. 221(C).
    19. Khalil, Khalil M. & Mahmoud, S. & Al- Dadah, R.K., 2020. "Experimental and numerical investigation of blade height effects on micro-scale axial turbines performance using compressed air open cycle," Energy, Elsevier, vol. 211(C).
    20. Yousefi, Amin & Guo, Hongsheng & Birouk, Madjid, 2020. "Split diesel injection effect on knocking of natural gas/diesel dual-fuel engine at high load conditions," Applied Energy, Elsevier, vol. 279(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:232:y:2018:i:c:p:358-367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.