Injected Fuel Mass and Flow Rate Control in Internal Combustion Engines: A Systematic Literature Review
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Macian, Vicente & Payri, Raul & Ruiz, Santiago & Bardi, Michele & Plazas, Alejandro H., 2014. "Experimental study of the relationship between injection rate shape and Diesel ignition using a novel piezo-actuated direct-acting injector," Applied Energy, Elsevier, vol. 118(C), pages 100-113.
- Xu, Leilei & Bai, Xue-Song & Jia, Ming & Qian, Yong & Qiao, Xinqi & Lu, Xingcai, 2018. "Experimental and modeling study of liquid fuel injection and combustion in diesel engines with a common rail injection system," Applied Energy, Elsevier, vol. 230(C), pages 287-304.
- Li, Yangyang & Duan, Xiongbo & Fu, Jianqin & Liu, Jingping & Wang, Shuqian & Dong, Hao & Xie, Yunkun, 2019. "Development of a method for on-board measurement of instant engine torque and fuel consumption rate based on direct signal measurement and RGF modelling under vehicle transient operating conditions," Energy, Elsevier, vol. 189(C).
- Ferrari, Alessandro & Paolicelli, Federica & Pizzo, Pietro, 2015. "The new-generation of solenoid injectors equipped with pressure-balanced pilot valves for energy saving and dynamic response improvement," Applied Energy, Elsevier, vol. 151(C), pages 367-376.
- Ferrari, A. & Mittica, A. & Spessa, E., 2013. "Benefits of hydraulic layout over driving system in piezo-injectors and proposal of a new-concept CR injector with an integrated Minirail," Applied Energy, Elsevier, vol. 103(C), pages 243-255.
- d’Ambrosio, Stefano & Finesso, Roberto & Fu, Lezhong & Mittica, Antonio & Spessa, Ezio, 2014. "A control-oriented real-time semi-empirical model for the prediction of NOx emissions in diesel engines," Applied Energy, Elsevier, vol. 130(C), pages 265-279.
- Genii Kuznetsov & Vadim Dorokhov & Ksenia Vershinina & Susanna Kerimbekova & Daniil Romanov & Ksenia Kartashova, 2023. "Composite Liquid Biofuels for Power Plants and Engines: Review," Energies, MDPI, vol. 16(16), pages 1-20, August.
- Payri, R. & Salvador, F.J. & Gimeno, J. & De la Morena, J., 2011. "Influence of injector technology on injection and combustion development - Part 1: Hydraulic characterization," Applied Energy, Elsevier, vol. 88(4), pages 1068-1074, April.
- Hari Ganesh, R. & Subramanian, V. & Balasubramanian, V. & Mallikarjuna, J.M. & Ramesh, A. & Sharma, R.P., 2008. "Hydrogen fueled spark ignition engine with electronically controlled manifold injection: An experimental study," Renewable Energy, Elsevier, vol. 33(6), pages 1324-1333.
- Payri, R. & Salvador, F.J. & Gimeno, J. & De la Morena, J., 2011. "Influence of injector technology on injection and combustion development - Part 2: Combustion analysis," Applied Energy, Elsevier, vol. 88(4), pages 1130-1139, April.
- Zhang, Qinghui & Hao, Zhiyong & Zheng, Xu & Yang, Wenying, 2017. "Characteristics and effect factors of pressure oscillation in multi-injection DI diesel engine at high-load conditions," Applied Energy, Elsevier, vol. 195(C), pages 52-66.
- Chaoqun Hu & Zhijun Wu & Alessandro Ferrari & Meng Ji & Jun Deng & Oscar Vento, 2024. "Numerical Study on Internal Flow and Cavitation Characteristics of GDI Injectors for Different Nozzle Orifice Geometries," Energies, MDPI, vol. 17(16), pages 1-21, August.
- Ferrari, A. & Mittica, A., 2016. "Response of different injector typologies to dwell time variations and a hydraulic analysis of closely-coupled and continuous rate shaping injection schedules," Applied Energy, Elsevier, vol. 169(C), pages 899-911.
- Lu, Xiangdong & Zhao, Jianhui & Markov, Vladimir & Wu, Tianyu, 2024. "Study on precise fuel injection under multiple injections of high pressure common rail system based on deep learning," Energy, Elsevier, vol. 307(C).
- Soriano, J.A. & Mata, C. & Armas, O. & Ávila, C., 2018. "A zero-dimensional model to simulate injection rate from first generation common rail diesel injectors under thermodynamic diagnosis," Energy, Elsevier, vol. 158(C), pages 845-858.
- Battistoni, Michele & Grimaldi, Carlo Nazareno, 2012. "Numerical analysis of injector flow and spray characteristics from diesel injectors using fossil and biodiesel fuels," Applied Energy, Elsevier, vol. 97(C), pages 656-666.
- Ferrari, A. & Novara, C. & Paolucci, E. & Vento, O. & Violante, M. & Zhang, T., 2018. "Design and rapid prototyping of a closed-loop control strategy of the injected mass for the reduction of CO2, combustion noise and pollutant emissions in diesel engines," Applied Energy, Elsevier, vol. 232(C), pages 358-367.
- Pos, Radboud & Wardle, Robert & Cracknell, Roger & Ganippa, Lionel, 2017. "Spatio-temporal evolution of diesel sprays at the early start of injection," Applied Energy, Elsevier, vol. 205(C), pages 391-398.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- S., d'Ambrosio & A., Ferrari, 2018. "Diesel engines equipped with piezoelectric and solenoid injectors: hydraulic performance of the injectors and comparison of the emissions, noise and fuel consumption," Applied Energy, Elsevier, vol. 211(C), pages 1324-1342.
- Magno, Agnese & Mancaruso, Ezio & Vaglieco, Bianca Maria, 2014. "Experimental investigation in an optically accessible diesel engine of a fouled piezoelectric injector," Energy, Elsevier, vol. 64(C), pages 842-852.
- Xu, Leilei & Bai, Xue-Song & Jia, Ming & Qian, Yong & Qiao, Xinqi & Lu, Xingcai, 2018. "Experimental and modeling study of liquid fuel injection and combustion in diesel engines with a common rail injection system," Applied Energy, Elsevier, vol. 230(C), pages 287-304.
- Liu, Bingxin & Fei, Hongzi & Wang, Liuping & Fan, Liyun & Yang, Xiaotao, 2024. "Real-time estimation of fuel injection rate and injection volume in high-pressure common rail systems," Energy, Elsevier, vol. 298(C).
- Payri, Raúl & Salvador, F.J. & Manin, Julien & Viera, Alberto, 2016. "Diesel ignition delay and lift-off length through different methodologies using a multi-hole injector," Applied Energy, Elsevier, vol. 162(C), pages 541-550.
- Ferrari, A. & Novara, C. & Paolucci, E. & Vento, O. & Violante, M. & Zhang, T., 2018. "Design and rapid prototyping of a closed-loop control strategy of the injected mass for the reduction of CO2, combustion noise and pollutant emissions in diesel engines," Applied Energy, Elsevier, vol. 232(C), pages 358-367.
- Huang, Weidi & Wu, Zhijun & Gao, Ya & Zhang, Lin, 2015. "Effect of shock waves on the evolution of high-pressure fuel jets," Applied Energy, Elsevier, vol. 159(C), pages 442-448.
- Song, Heping & Liu, Changpeng & Li, Yanfei & Wang, Zhi & Chen, Longfei & He, Xin & Wang, Jianxin, 2018. "An exploration of utilizing low-pressure diesel injection for natural gas dual-fuel low-temperature combustion," Energy, Elsevier, vol. 153(C), pages 248-255.
- Lu, Xiangdong & Zhao, Jianhui & Markov, Vladimir & Wu, Tianyu, 2024. "Study on precise fuel injection under multiple injections of high pressure common rail system based on deep learning," Energy, Elsevier, vol. 307(C).
- Stefano d’Ambrosio & Alessandro Ferrari & Alessandro Mancarella & Salvatore Mancò & Antonio Mittica, 2019. "Comparison of the Emissions, Noise, and Fuel Consumption Comparison of Direct and Indirect Piezoelectric and Solenoid Injectors in a Low-Compression-Ratio Diesel Engine," Energies, MDPI, vol. 12(21), pages 1-16, October.
- T. M. Yunus Khan, 2020. "A Review of Performance-Enhancing Innovative Modifications in Biodiesel Engines," Energies, MDPI, vol. 13(17), pages 1-22, August.
- Zeinivand, Hamed & Bazdidi-Tehrani, Farzad, 2012. "Influence of stabilizer jets on combustion characteristics and NOx emission in a jet-stabilized combustor," Applied Energy, Elsevier, vol. 92(C), pages 348-360.
- Zhong, Wenjun & Pachiannan, Tamilselvan & He, Zhixia & Xuan, Tiemin & Wang, Qian, 2019. "Experimental study of ignition, lift-off length and emission characteristics of diesel/hydrogenated catalytic biodiesel blends," Applied Energy, Elsevier, vol. 235(C), pages 641-652.
- Payri, Raul & Gimeno, Jaime & Bardi, Michele & Plazas, Alejandro H., 2013. "Study liquid length penetration results obtained with a direct acting piezo electric injector," Applied Energy, Elsevier, vol. 106(C), pages 152-162.
- Luka Lešnik & Breda Kegl & Eloísa Torres-Jiménez & Fernando Cruz-Peragón & Carmen Mata & Ignacijo Biluš, 2021. "Effect of the In-Cylinder Back Pressure on the Injection Process and Fuel Flow Characteristics in a Common-Rail Diesel Injector Using GTL Fuel," Energies, MDPI, vol. 14(2), pages 1-21, January.
- Plamondon, E. & Seers, P., 2014. "Development of a simplified dynamic model for a piezoelectric injector using multiple injection strategies with biodiesel/diesel-fuel blends," Applied Energy, Elsevier, vol. 131(C), pages 411-424.
- Zhang, Jibao & Zhang, Xin & Wang, Tao & Hou, Xiaosen, 2019. "A numerical study on jet characteristics under different supercritical conditions for engine applications," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
- Van Viet Pham & Duc Thiep Cao, 2019. "A Brief Review Of Technology Solutions On Fuel Injection System Of Diesel Engine To Increase The Power And Reduce Environmental Pollution," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 42(1), pages 1-9, January.
- Ferrari, A. & Mittica, A., 2012. "FEM modeling of the piezoelectric driving system in the design of direct-acting diesel injectors," Applied Energy, Elsevier, vol. 99(C), pages 471-483.
- Ferrari, A. & Mittica, A., 2016. "Response of different injector typologies to dwell time variations and a hydraulic analysis of closely-coupled and continuous rate shaping injection schedules," Applied Energy, Elsevier, vol. 169(C), pages 899-911.
More about this item
Keywords
systematic review; injected fuel mass control; internal combustion engine;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:24:p:6455-:d:1549504. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.