IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v230y2018icp946-959.html
   My bibliography  Save this article

Enhancing flame flashback resistance against Combustion Induced Vortex Breakdown and Boundary Layer Flashback in swirl burners

Author

Listed:
  • Hatem, F.A.
  • Alsaegh, A.S.
  • Al-Faham, M.
  • Valera-Medina, A.
  • Chong, C.T.
  • Hassoni, S.M.

Abstract

Swirl combustors have proven to be effective flame stabilisers over a wide range of operation conditions thanks to the formation of well-known swirl coherent structures. However, their employment for lean premixed combustion modes while introducing alternative fuels such as high hydrogenated blends results in many combustion instabilities. Under these conditions, flame flashback is considered one of the major instability problems that have the potential of causing considerable damage to combustion systems hardware in addition to the significant increase in pollutant levels. Combustion Induced Vortex Breakdown is considered a very particular mode of flashback instability in swirling flows as this type of flashback occurs even when the fresh mixture velocity is higher than the flame speed, a consequence of the interaction between swirl structures and swirl burner geometries. Improvements in burner geometries and manipulation of swirling flows can increase resistance against this type of flashback. However, increasing resistance against Combustion Induced Vortex Breakdown can lead to augmentation in the propensity of another flashback mechanism, Boundary Layer Flashback. Thus, this paper presents an experimental approach of a combination of techniques that increase Combustion Induced Vortex Breakdown resistance, i.e. by repositioning a central injector and using central air injection, while simultaneously avoiding Boundary Layer Flashback, i.e. by changing the wall boundary layer characteristics using microsurfaces on the nozzle wall. Results show that using these techniques together has promising potentials regarding wider stable operation for swirl combustors, enabling them to burn a broader variety of fuel blends safely, while informing developers of the improvements obtained with the combined techniques.

Suggested Citation

  • Hatem, F.A. & Alsaegh, A.S. & Al-Faham, M. & Valera-Medina, A. & Chong, C.T. & Hassoni, S.M., 2018. "Enhancing flame flashback resistance against Combustion Induced Vortex Breakdown and Boundary Layer Flashback in swirl burners," Applied Energy, Elsevier, vol. 230(C), pages 946-959.
  • Handle: RePEc:eee:appene:v:230:y:2018:i:c:p:946-959
    DOI: 10.1016/j.apenergy.2018.09.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918313576
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.09.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arghode, Vaibhav K. & Gupta, Ashwani K. & Bryden, Kenneth M., 2012. "High intensity colorless distributed combustion for ultra low emissions and enhanced performance," Applied Energy, Elsevier, vol. 92(C), pages 822-830.
    2. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2015. "Toward ultra-low emission distributed combustion with fuel air dilution," Applied Energy, Elsevier, vol. 148(C), pages 187-195.
    3. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2014. "Velocity and turbulence effects on high intensity distributed combustion," Applied Energy, Elsevier, vol. 125(C), pages 1-9.
    4. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2013. "Hydrogen addition effects on high intensity distributed combustion," Applied Energy, Elsevier, vol. 104(C), pages 71-78.
    5. Taamallah, S. & Vogiatzaki, K. & Alzahrani, F.M. & Mokheimer, E.M.A. & Habib, M.A. & Ghoniem, A.F., 2015. "Fuel flexibility, stability and emissions in premixed hydrogen-rich gas turbine combustion: Technology, fundamentals, and numerical simulations," Applied Energy, Elsevier, vol. 154(C), pages 1020-1047.
    6. Syred, N. & Giles, A. & Lewis, J. & Abdulsada, M. & Valera Medina, A. & Marsh, R. & Bowen, P.J. & Griffiths, A.J., 2014. "Effect of inlet and outlet configurations on blow-off and flashback with premixed combustion for methane and a high hydrogen content fuel in a generic swirl burner," Applied Energy, Elsevier, vol. 116(C), pages 288-296.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A., 2018. "Liquid biofuels utilization for gas turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 43-55.
    2. Tyliszczak, Artur & Boguslawski, Andrzej & Nowak, Dariusz, 2016. "Numerical simulations of combustion process in a gas turbine with a single and multi-point fuel injection system," Applied Energy, Elsevier, vol. 174(C), pages 153-165.
    3. Yilmaz, Harun & Yilmaz, Ilker, 2019. "Combustion and emission characteristics of premixed CNG/H2/CO/CO2 blending synthetic gas flames in a combustor with variable geometric swirl number," Energy, Elsevier, vol. 172(C), pages 117-133.
    4. Xiao, Huahua & He, Xuechao & Duan, Qiangling & Luo, Xisheng & Sun, Jinhua, 2014. "An investigation of premixed flame propagation in a closed combustion duct with a 90° bend," Applied Energy, Elsevier, vol. 134(C), pages 248-256.
    5. Khidr, Kareem I. & Eldrainy, Yehia A. & EL-Kassaby, Mohamed M., 2017. "Towards lower gas turbine emissions: Flameless distributed combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1237-1266.
    6. Karyeyen, Serhat & Feser, Joseph S. & Gupta, Ashwani K., 2019. "Swirl assisted distributed combustion behavior using hydrogen-rich gaseous fuels," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2015. "Impact of internal entrainment on high intensity distributed combustion," Applied Energy, Elsevier, vol. 156(C), pages 241-250.
    8. Sorrentino, Giancarlo & Sabia, Pino & Bozza, Pio & Ragucci, Raffaele & de Joannon, Mara, 2017. "Impact of external operating parameters on the performance of a cyclonic burner with high level of internal recirculation under MILD combustion conditions," Energy, Elsevier, vol. 137(C), pages 1167-1174.
    9. Zhang, Zhiguo & Zhao, Dan & Ni, Siliang & Sun, Yuze & Wang, Bing & Chen, Yong & Li, Guoneng & Li, S., 2019. "Experimental characterizing combustion emissions and thermodynamic properties of a thermoacoustic swirl combustor," Applied Energy, Elsevier, vol. 235(C), pages 463-472.
    10. Igor Donskoy, 2023. "Techno-Economic Efficiency Estimation of Promising Integrated Oxyfuel Gasification Combined-Cycle Power Plants with Carbon Capture," Clean Technol., MDPI, vol. 5(1), pages 1-18, February.
    11. Sun, Yuze & Rao, Zhuming & Zhao, Dan & Wang, Bing & Sun, Dakun & Sun, Xiaofeng, 2020. "Characterizing nonlinear dynamic features of self-sustained thermoacoustic oscillations in a premixed swirling combustor," Applied Energy, Elsevier, vol. 264(C).
    12. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2014. "Swirling flowfield for colorless distributed combustion," Applied Energy, Elsevier, vol. 113(C), pages 208-218.
    13. Sorrentino, Giancarlo & Sabia, Pino & Bozza, Pio & Ragucci, Raffaele & de Joannon, Mara, 2019. "Low-NOx conversion of pure ammonia in a cyclonic burner under locally diluted and preheated conditions," Applied Energy, Elsevier, vol. 254(C).
    14. Marco-Osvaldo Vigueras-Zuniga & Maria-Elena Tejeda-del-Cueto & José-Alejandro Vasquez-Santacruz & Agustín-Leobardo Herrera-May & Agustin Valera-Medina, 2020. "Numerical Predictions of a Swirl Combustor Using Complex Chemistry Fueled with Ammonia/Hydrogen Blends," Energies, MDPI, vol. 13(2), pages 1-17, January.
    15. Ramadan, Islam A. & Ibrahim, Abdelmaged H. & Abou-Arab, Tharwat W. & Rashwan, Sherif S. & Nemitallah, Medhat A. & Habib, Mohamed A., 2016. "Effects of oxidizer flexibility and bluff-body blockage ratio on flammability limits of diffusion flames," Applied Energy, Elsevier, vol. 178(C), pages 19-28.
    16. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2014. "Velocity and turbulence effects on high intensity distributed combustion," Applied Energy, Elsevier, vol. 125(C), pages 1-9.
    17. Xing, Fei & Kumar, Arvind & Huang, Yue & Chan, Shining & Ruan, Can & Gu, Sai & Fan, Xiaolei, 2017. "Flameless combustion with liquid fuel: A review focusing on fundamentals and gas turbine application," Applied Energy, Elsevier, vol. 193(C), pages 28-51.
    18. Roy, Rishi & Gupta, Ashwani K., 2023. "Performance enhancement of swirl-assisted distributed combustion with hydrogen-enriched methane," Applied Energy, Elsevier, vol. 338(C).
    19. Tian, Junjian & Liu, Xiang & Shi, Hao & Yao, Yurou & Ni, Zhanshi & Meng, Kengsheng & Hu, Peng & Lin, Qizhao, 2024. "Experimental study on MILD combustion of methane under non-preheated condition in a swirl combustion furnace," Applied Energy, Elsevier, vol. 363(C).
    20. Michel Feidt & Gheorghe Dumitrascu & Ana-Georgiana Lupu, 2023. "Chemical Modeling of Constant-Volume Combustion of the Mixture of Methane and Hydrogen Used in Spark Ignition Otto Cycles," Energies, MDPI, vol. 16(12), pages 1-27, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:230:y:2018:i:c:p:946-959. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.