IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v104y2013icp71-78.html
   My bibliography  Save this article

Hydrogen addition effects on high intensity distributed combustion

Author

Listed:
  • Khalil, Ahmed E.E.
  • Gupta, Ashwani K.

Abstract

Distributed combustion provides significant improvements under high intensity conditions characteristic of gas turbine to provide uniform thermal field (improved pattern factor), ultra-low pollution, enhanced stability and higher efficiency. Mixing between fresh air/fuel stream with hot reactive species is critical to result in distributed reactions and spontaneous ignition. Hydrogen enrichment of fuel is examined with emphasis on combustion stability and emissions under swirling flow conditions. Results are presented on the role of hydrogen enrichment to methane (4–15% by mass, 25–58.5% by volume) on the combustion characteristics under fuel-lean conditions. CO emission was substantially reduced with hydrogen enrichment, with minimal effect on NO emission under premixed combustion. Hydrogen addition extended the lean operational limits of the combustor with stable combustion and no flame fluctuations or flashback. Results obtained on pollutants emission and flame marking via OH* chemiluminescence revealed near volume distributed high intensity combustion with ultra-low emission (<3PPM NO and <9PPM CO) and high performance at lower equivalence ratio. Hybrid numerical–experimental approach can provide more realistic prediction of NO emission from hydrogen enriched methane combustion.

Suggested Citation

  • Khalil, Ahmed E.E. & Gupta, Ashwani K., 2013. "Hydrogen addition effects on high intensity distributed combustion," Applied Energy, Elsevier, vol. 104(C), pages 71-78.
  • Handle: RePEc:eee:appene:v:104:y:2013:i:c:p:71-78
    DOI: 10.1016/j.apenergy.2012.11.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912007908
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.11.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arghode, Vaibhav K. & Gupta, Ashwani K. & Bryden, Kenneth M., 2012. "High intensity colorless distributed combustion for ultra low emissions and enhanced performance," Applied Energy, Elsevier, vol. 92(C), pages 822-830.
    2. Arghode, Vaibhav K. & Gupta, Ashwani K., 2010. "Effect of flow field for colorless distributed combustion (CDC) for gas turbine combustion," Applied Energy, Elsevier, vol. 87(5), pages 1631-1640, May.
    3. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2011. "Swirling distributed combustion for clean energy conversion in gas turbine applications," Applied Energy, Elsevier, vol. 88(11), pages 3685-3693.
    4. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2011. "Distributed swirl combustion for gas turbine application," Applied Energy, Elsevier, vol. 88(12), pages 4898-4907.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan, Beibei & Wu, Zhaoting & Zhou, Shengquan & Lv, Jingwen & Liu, Xiaoyun & Wu, Wenzhu & Chen, Guanyi, 2024. "A critical review of NH3–H2 combustion mechanisms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    2. Nemitallah, Medhat A. & Imteyaz, Binash & Abdelhafez, Ahmed & Habib, Mohamed A., 2019. "Experimental and computational study on stability characteristics of hydrogen-enriched oxy-methane premixed flames," Applied Energy, Elsevier, vol. 250(C), pages 433-443.
    3. Karyeyen, Serhat & Feser, Joseph S. & Gupta, Ashwani K., 2019. "Swirl assisted distributed combustion behavior using hydrogen-rich gaseous fuels," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    4. Xiao, Huahua & He, Xuechao & Duan, Qiangling & Luo, Xisheng & Sun, Jinhua, 2014. "An investigation of premixed flame propagation in a closed combustion duct with a 90° bend," Applied Energy, Elsevier, vol. 134(C), pages 248-256.
    5. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2015. "Impact of internal entrainment on high intensity distributed combustion," Applied Energy, Elsevier, vol. 156(C), pages 241-250.
    6. Syred, N. & Giles, A. & Lewis, J. & Abdulsada, M. & Valera Medina, A. & Marsh, R. & Bowen, P.J. & Griffiths, A.J., 2014. "Effect of inlet and outlet configurations on blow-off and flashback with premixed combustion for methane and a high hydrogen content fuel in a generic swirl burner," Applied Energy, Elsevier, vol. 116(C), pages 288-296.
    7. Khidr, Kareem I. & Eldrainy, Yehia A. & EL-Kassaby, Mohamed M., 2017. "Towards lower gas turbine emissions: Flameless distributed combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1237-1266.
    8. Hatem, F.A. & Alsaegh, A.S. & Al-Faham, M. & Valera-Medina, A. & Chong, C.T. & Hassoni, S.M., 2018. "Enhancing flame flashback resistance against Combustion Induced Vortex Breakdown and Boundary Layer Flashback in swirl burners," Applied Energy, Elsevier, vol. 230(C), pages 946-959.
    9. Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A., 2018. "Liquid biofuels utilization for gas turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 43-55.
    10. Roy, Rishi & Gupta, Ashwani K., 2023. "Performance enhancement of swirl-assisted distributed combustion with hydrogen-enriched methane," Applied Energy, Elsevier, vol. 338(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2014. "Swirling flowfield for colorless distributed combustion," Applied Energy, Elsevier, vol. 113(C), pages 208-218.
    2. Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A., 2018. "Liquid biofuels utilization for gas turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 43-55.
    3. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2014. "Velocity and turbulence effects on high intensity distributed combustion," Applied Energy, Elsevier, vol. 125(C), pages 1-9.
    4. Tyliszczak, Artur & Boguslawski, Andrzej & Nowak, Dariusz, 2016. "Numerical simulations of combustion process in a gas turbine with a single and multi-point fuel injection system," Applied Energy, Elsevier, vol. 174(C), pages 153-165.
    5. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2013. "Fuel flexible distributed combustion for efficient and clean gas turbine engines," Applied Energy, Elsevier, vol. 109(C), pages 267-274.
    6. Arghode, Vaibhav K. & Khalil, Ahmed E.E. & Gupta, Ashwani K., 2012. "Fuel dilution and liquid fuel operational effects on ultra-high thermal intensity distributed combustor," Applied Energy, Elsevier, vol. 95(C), pages 132-138.
    7. Kuban, Lukasz & Stempka, Jakub & Tyliszczak, Artur, 2019. "A 3D-CFD study of a γ-type Stirling engine," Energy, Elsevier, vol. 169(C), pages 142-159.
    8. Khalil, Ahmed E.E. & Arghode, Vaibhav K. & Gupta, Ashwani K., 2013. "Novel mixing for ultra-high thermal intensity distributed combustion," Applied Energy, Elsevier, vol. 105(C), pages 327-334.
    9. Arghode, Vaibhav K. & Gupta, Ashwani K., 2013. "Role of thermal intensity on operational characteristics of ultra-low emission colorless distributed combustion," Applied Energy, Elsevier, vol. 111(C), pages 930-956.
    10. Khalil, Ahmed E.E. & Arghode, Vaibhav K. & Gupta, Ashwani K. & Lee, Sang Chun, 2012. "Low calorific value fuelled distributed combustion with swirl for gas turbine applications," Applied Energy, Elsevier, vol. 98(C), pages 69-78.
    11. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2018. "Fostering distributed combustion in a swirl burner using prevaporized liquid fuels," Applied Energy, Elsevier, vol. 211(C), pages 513-522.
    12. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2014. "Towards distributed combustion for ultra low emission using swirling and non-swirling flowfields," Applied Energy, Elsevier, vol. 121(C), pages 132-139.
    13. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2015. "Internal entrainment effects on high intensity distributed combustion using non-intrusive diagnostics," Applied Energy, Elsevier, vol. 160(C), pages 467-476.
    14. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2015. "Thermal field investigation under distributed combustion conditions," Applied Energy, Elsevier, vol. 160(C), pages 477-488.
    15. Sánchez, Mario & Cadavid, Francisco & Amell, Andrés, 2013. "Experimental evaluation of a 20kW oxygen enhanced self-regenerative burner operated in flameless combustion mode," Applied Energy, Elsevier, vol. 111(C), pages 240-246.
    16. Wang, Yi & Cheong, Kin-Pang & Wang, Junyang & Liu, Shaotong & Hu, Yong & Chyu, Minking & Mi, Jianchun, 2024. "Operational condition and furnace geometry for premixed C3H8/Air MILD combustion of high thermal-intensity and low emissions," Energy, Elsevier, vol. 288(C).
    17. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2015. "Impact of internal entrainment on high intensity distributed combustion," Applied Energy, Elsevier, vol. 156(C), pages 241-250.
    18. Kruse, Stephan & Kerschgens, Bruno & Berger, Lukas & Varea, Emilien & Pitsch, Heinz, 2015. "Experimental and numerical study of MILD combustion for gas turbine applications," Applied Energy, Elsevier, vol. 148(C), pages 456-465.
    19. Sharma, Saurabh & Singh, Paramvir & Gupta, Ashish & Chowdhury, Arindrajit & Khandelwal, Bhupendra & Kumar, Sudarshan, 2020. "Distributed combustion mode in a can-type gas turbine combustor – A numerical and experimental study," Applied Energy, Elsevier, vol. 277(C).
    20. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2015. "Toward ultra-low emission distributed combustion with fuel air dilution," Applied Energy, Elsevier, vol. 148(C), pages 187-195.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:104:y:2013:i:c:p:71-78. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.