Toward ultra-low emission distributed combustion with fuel air dilution
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2015.03.066
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Khalil, Ahmed E.E. & Gupta, Ashwani K., 2014. "Velocity and turbulence effects on high intensity distributed combustion," Applied Energy, Elsevier, vol. 125(C), pages 1-9.
- Khalil, Ahmed E.E. & Arghode, Vaibhav K. & Gupta, Ashwani K., 2013. "Novel mixing for ultra-high thermal intensity distributed combustion," Applied Energy, Elsevier, vol. 105(C), pages 327-334.
- Arghode, Vaibhav K. & Khalil, Ahmed E.E. & Gupta, Ashwani K., 2012. "Fuel dilution and liquid fuel operational effects on ultra-high thermal intensity distributed combustor," Applied Energy, Elsevier, vol. 95(C), pages 132-138.
- Khalil, Ahmed E.E. & Gupta, Ashwani K., 2014. "Swirling flowfield for colorless distributed combustion," Applied Energy, Elsevier, vol. 113(C), pages 208-218.
- Arghode, Vaibhav K. & Gupta, Ashwani K., 2010. "Effect of flow field for colorless distributed combustion (CDC) for gas turbine combustion," Applied Energy, Elsevier, vol. 87(5), pages 1631-1640, May.
- Khalil, Ahmed E.E. & Gupta, Ashwani K., 2011. "Swirling distributed combustion for clean energy conversion in gas turbine applications," Applied Energy, Elsevier, vol. 88(11), pages 3685-3693.
- Khalil, Ahmed E.E. & Gupta, Ashwani K., 2011. "Distributed swirl combustion for gas turbine application," Applied Energy, Elsevier, vol. 88(12), pages 4898-4907.
- Khalil, Ahmed E.E. & Arghode, Vaibhav K. & Gupta, Ashwani K. & Lee, Sang Chun, 2012. "Low calorific value fuelled distributed combustion with swirl for gas turbine applications," Applied Energy, Elsevier, vol. 98(C), pages 69-78.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Tyliszczak, Artur & Boguslawski, Andrzej & Nowak, Dariusz, 2016. "Numerical simulations of combustion process in a gas turbine with a single and multi-point fuel injection system," Applied Energy, Elsevier, vol. 174(C), pages 153-165.
- Altarazi, Yazan S.M. & Abu Talib, Abd Rahim & Yu, Jianglong & Gires, Ezanee & Abdul Ghafir, Mohd Fahmi & Lucas, John & Yusaf, Talal, 2022. "Effects of biofuel on engines performance and emission characteristics: A review," Energy, Elsevier, vol. 238(PC).
- Sorrentino, Giancarlo & Sabia, Pino & Bozza, Pio & Ragucci, Raffaele & de Joannon, Mara, 2017. "Impact of external operating parameters on the performance of a cyclonic burner with high level of internal recirculation under MILD combustion conditions," Energy, Elsevier, vol. 137(C), pages 1167-1174.
- Hatem, F.A. & Alsaegh, A.S. & Al-Faham, M. & Valera-Medina, A. & Chong, C.T. & Hassoni, S.M., 2018. "Enhancing flame flashback resistance against Combustion Induced Vortex Breakdown and Boundary Layer Flashback in swirl burners," Applied Energy, Elsevier, vol. 230(C), pages 946-959.
- Tian, Junjian & Liu, Xiang & Shi, Hao & Yao, Yurou & Ni, Zhanshi & Meng, Kengsheng & Hu, Peng & Lin, Qizhao, 2024. "Experimental study on MILD combustion of methane under non-preheated condition in a swirl combustion furnace," Applied Energy, Elsevier, vol. 363(C).
- Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A., 2018. "Liquid biofuels utilization for gas turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 43-55.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A., 2018. "Liquid biofuels utilization for gas turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 43-55.
- Tyliszczak, Artur & Boguslawski, Andrzej & Nowak, Dariusz, 2016. "Numerical simulations of combustion process in a gas turbine with a single and multi-point fuel injection system," Applied Energy, Elsevier, vol. 174(C), pages 153-165.
- Khalil, Ahmed E.E. & Gupta, Ashwani K., 2014. "Towards distributed combustion for ultra low emission using swirling and non-swirling flowfields," Applied Energy, Elsevier, vol. 121(C), pages 132-139.
- Khalil, Ahmed E.E. & Gupta, Ashwani K., 2014. "Velocity and turbulence effects on high intensity distributed combustion," Applied Energy, Elsevier, vol. 125(C), pages 1-9.
- Khidr, Kareem I. & Eldrainy, Yehia A. & EL-Kassaby, Mohamed M., 2017. "Towards lower gas turbine emissions: Flameless distributed combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1237-1266.
- Khalil, Ahmed E.E. & Gupta, Ashwani K., 2015. "Internal entrainment effects on high intensity distributed combustion using non-intrusive diagnostics," Applied Energy, Elsevier, vol. 160(C), pages 467-476.
- Khalil, Ahmed E.E. & Gupta, Ashwani K., 2015. "Thermal field investigation under distributed combustion conditions," Applied Energy, Elsevier, vol. 160(C), pages 477-488.
- Khalil, Ahmed E.E. & Arghode, Vaibhav K. & Gupta, Ashwani K., 2013. "Novel mixing for ultra-high thermal intensity distributed combustion," Applied Energy, Elsevier, vol. 105(C), pages 327-334.
- Arghode, Vaibhav K. & Gupta, Ashwani K., 2013. "Role of thermal intensity on operational characteristics of ultra-low emission colorless distributed combustion," Applied Energy, Elsevier, vol. 111(C), pages 930-956.
- Khalil, Ahmed E.E. & Gupta, Ashwani K., 2014. "Swirling flowfield for colorless distributed combustion," Applied Energy, Elsevier, vol. 113(C), pages 208-218.
- Khalil, Ahmed E.E. & Gupta, Ashwani K., 2013. "Fuel flexible distributed combustion for efficient and clean gas turbine engines," Applied Energy, Elsevier, vol. 109(C), pages 267-274.
- Kuban, Lukasz & Stempka, Jakub & Tyliszczak, Artur, 2019. "A 3D-CFD study of a γ-type Stirling engine," Energy, Elsevier, vol. 169(C), pages 142-159.
- Khalil, Ahmed E.E. & Gupta, Ashwani K., 2015. "Impact of internal entrainment on high intensity distributed combustion," Applied Energy, Elsevier, vol. 156(C), pages 241-250.
- Khalil, Ahmed E.E. & Arghode, Vaibhav K. & Gupta, Ashwani K. & Lee, Sang Chun, 2012. "Low calorific value fuelled distributed combustion with swirl for gas turbine applications," Applied Energy, Elsevier, vol. 98(C), pages 69-78.
- Khalil, Ahmed E.E. & Gupta, Ashwani K., 2018. "Fostering distributed combustion in a swirl burner using prevaporized liquid fuels," Applied Energy, Elsevier, vol. 211(C), pages 513-522.
- Tian, Junjian & Liu, Xiang & Shi, Hao & Yao, Yurou & Ni, Zhanshi & Meng, Kengsheng & Hu, Peng & Lin, Qizhao, 2024. "Experimental study on MILD combustion of methane under non-preheated condition in a swirl combustion furnace," Applied Energy, Elsevier, vol. 363(C).
- Li, Mingyu & He, Xiaomin & Zhao, Yuling & Jin, Yi & Ge, Zhenghao & Sun, Yuan, 2017. "Dome structure effects on combustion performance of a trapped vortex combustor," Applied Energy, Elsevier, vol. 208(C), pages 72-82.
- Khalil, Ahmed E.E. & Gupta, Ashwani K., 2017. "Acoustic and heat release signatures for swirl assisted distributed combustion," Applied Energy, Elsevier, vol. 193(C), pages 125-138.
- Khalil, Ahmed E.E. & Gupta, Ashwani K., 2013. "Hydrogen addition effects on high intensity distributed combustion," Applied Energy, Elsevier, vol. 104(C), pages 71-78.
- Arghode, Vaibhav K. & Khalil, Ahmed E.E. & Gupta, Ashwani K., 2012. "Fuel dilution and liquid fuel operational effects on ultra-high thermal intensity distributed combustor," Applied Energy, Elsevier, vol. 95(C), pages 132-138.
More about this item
Keywords
Air dilution; Colorless distributed combustion (CDC); Ultra-low NOx and CO emission; Gas turbine combustion; Air–fuel mixing;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:148:y:2015:i:c:p:187-195. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.