IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v148y2015icp187-195.html
   My bibliography  Save this article

Toward ultra-low emission distributed combustion with fuel air dilution

Author

Listed:
  • Khalil, Ahmed E.E.
  • Gupta, Ashwani K.

Abstract

Colorless distributed combustion (CDC) has been shown to offer enhanced combustor performance for stationary gas turbine application with near zero emissions, high combustion intensity and efficiency, thermal field uniformity, and enhanced stability. Mixture preparation to form hot and low oxygen concentration environment paves the path to achieve CDC conditions. In this paper, a new approach of air dilution in partially premixed combustion conditions is employed and the results compared to premixed and non-premixed injection of air and fuel. Portion of the fuel is introduced in the air stream and portion of the air is introduced in the fuel stream such that the local equivalence ratios for each stream is well outside the flammability limit to eliminate flashback and instabilities. The experimental data demonstrated ultra-low emissions with this injection scheme. At equivalence ratio of 0.6, NO emission was 63% lower than non-premixed combustion mode. Also NO emission was similar to the premixed combustion with the advantage of eliminating flashback and flame instabilities that often prevail in premixed combustion conditions. Dilution provided 50% CO reduction as compared to non-premixed combustion. Numerical simulations, validated through Particle Image Velocimetry, were performed to outline the mixing process in each of the three cases. The methane mixture fraction prior to ignition, determined numerically, was found to be one half of that for the non-premixed case and close to that of the premixed case. This enhanced mixture preparation, associated with the new air and fuel dilution technique, resulted in reduced emission. Also the jet momentum ratio (between both streams) is enhanced, mainly due to the air addition to the fuel stream, to result in better mixing and a better reaction distribution for ultra-low emissions. Further reduction of NOx is expected with improved distributed combustion condition.

Suggested Citation

  • Khalil, Ahmed E.E. & Gupta, Ashwani K., 2015. "Toward ultra-low emission distributed combustion with fuel air dilution," Applied Energy, Elsevier, vol. 148(C), pages 187-195.
  • Handle: RePEc:eee:appene:v:148:y:2015:i:c:p:187-195
    DOI: 10.1016/j.apenergy.2015.03.066
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191500358X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.03.066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2014. "Velocity and turbulence effects on high intensity distributed combustion," Applied Energy, Elsevier, vol. 125(C), pages 1-9.
    2. Khalil, Ahmed E.E. & Arghode, Vaibhav K. & Gupta, Ashwani K., 2013. "Novel mixing for ultra-high thermal intensity distributed combustion," Applied Energy, Elsevier, vol. 105(C), pages 327-334.
    3. Arghode, Vaibhav K. & Khalil, Ahmed E.E. & Gupta, Ashwani K., 2012. "Fuel dilution and liquid fuel operational effects on ultra-high thermal intensity distributed combustor," Applied Energy, Elsevier, vol. 95(C), pages 132-138.
    4. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2014. "Swirling flowfield for colorless distributed combustion," Applied Energy, Elsevier, vol. 113(C), pages 208-218.
    5. Arghode, Vaibhav K. & Gupta, Ashwani K., 2010. "Effect of flow field for colorless distributed combustion (CDC) for gas turbine combustion," Applied Energy, Elsevier, vol. 87(5), pages 1631-1640, May.
    6. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2011. "Swirling distributed combustion for clean energy conversion in gas turbine applications," Applied Energy, Elsevier, vol. 88(11), pages 3685-3693.
    7. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2011. "Distributed swirl combustion for gas turbine application," Applied Energy, Elsevier, vol. 88(12), pages 4898-4907.
    8. Khalil, Ahmed E.E. & Arghode, Vaibhav K. & Gupta, Ashwani K. & Lee, Sang Chun, 2012. "Low calorific value fuelled distributed combustion with swirl for gas turbine applications," Applied Energy, Elsevier, vol. 98(C), pages 69-78.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tyliszczak, Artur & Boguslawski, Andrzej & Nowak, Dariusz, 2016. "Numerical simulations of combustion process in a gas turbine with a single and multi-point fuel injection system," Applied Energy, Elsevier, vol. 174(C), pages 153-165.
    2. Altarazi, Yazan S.M. & Abu Talib, Abd Rahim & Yu, Jianglong & Gires, Ezanee & Abdul Ghafir, Mohd Fahmi & Lucas, John & Yusaf, Talal, 2022. "Effects of biofuel on engines performance and emission characteristics: A review," Energy, Elsevier, vol. 238(PC).
    3. Sorrentino, Giancarlo & Sabia, Pino & Bozza, Pio & Ragucci, Raffaele & de Joannon, Mara, 2017. "Impact of external operating parameters on the performance of a cyclonic burner with high level of internal recirculation under MILD combustion conditions," Energy, Elsevier, vol. 137(C), pages 1167-1174.
    4. Hatem, F.A. & Alsaegh, A.S. & Al-Faham, M. & Valera-Medina, A. & Chong, C.T. & Hassoni, S.M., 2018. "Enhancing flame flashback resistance against Combustion Induced Vortex Breakdown and Boundary Layer Flashback in swirl burners," Applied Energy, Elsevier, vol. 230(C), pages 946-959.
    5. Tian, Junjian & Liu, Xiang & Shi, Hao & Yao, Yurou & Ni, Zhanshi & Meng, Kengsheng & Hu, Peng & Lin, Qizhao, 2024. "Experimental study on MILD combustion of methane under non-preheated condition in a swirl combustion furnace," Applied Energy, Elsevier, vol. 363(C).
    6. Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A., 2018. "Liquid biofuels utilization for gas turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 43-55.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A., 2018. "Liquid biofuels utilization for gas turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 43-55.
    2. Tyliszczak, Artur & Boguslawski, Andrzej & Nowak, Dariusz, 2016. "Numerical simulations of combustion process in a gas turbine with a single and multi-point fuel injection system," Applied Energy, Elsevier, vol. 174(C), pages 153-165.
    3. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2014. "Towards distributed combustion for ultra low emission using swirling and non-swirling flowfields," Applied Energy, Elsevier, vol. 121(C), pages 132-139.
    4. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2014. "Velocity and turbulence effects on high intensity distributed combustion," Applied Energy, Elsevier, vol. 125(C), pages 1-9.
    5. Khidr, Kareem I. & Eldrainy, Yehia A. & EL-Kassaby, Mohamed M., 2017. "Towards lower gas turbine emissions: Flameless distributed combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1237-1266.
    6. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2015. "Internal entrainment effects on high intensity distributed combustion using non-intrusive diagnostics," Applied Energy, Elsevier, vol. 160(C), pages 467-476.
    7. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2015. "Thermal field investigation under distributed combustion conditions," Applied Energy, Elsevier, vol. 160(C), pages 477-488.
    8. Khalil, Ahmed E.E. & Arghode, Vaibhav K. & Gupta, Ashwani K., 2013. "Novel mixing for ultra-high thermal intensity distributed combustion," Applied Energy, Elsevier, vol. 105(C), pages 327-334.
    9. Arghode, Vaibhav K. & Gupta, Ashwani K., 2013. "Role of thermal intensity on operational characteristics of ultra-low emission colorless distributed combustion," Applied Energy, Elsevier, vol. 111(C), pages 930-956.
    10. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2014. "Swirling flowfield for colorless distributed combustion," Applied Energy, Elsevier, vol. 113(C), pages 208-218.
    11. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2013. "Fuel flexible distributed combustion for efficient and clean gas turbine engines," Applied Energy, Elsevier, vol. 109(C), pages 267-274.
    12. Kuban, Lukasz & Stempka, Jakub & Tyliszczak, Artur, 2019. "A 3D-CFD study of a γ-type Stirling engine," Energy, Elsevier, vol. 169(C), pages 142-159.
    13. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2015. "Impact of internal entrainment on high intensity distributed combustion," Applied Energy, Elsevier, vol. 156(C), pages 241-250.
    14. Khalil, Ahmed E.E. & Arghode, Vaibhav K. & Gupta, Ashwani K. & Lee, Sang Chun, 2012. "Low calorific value fuelled distributed combustion with swirl for gas turbine applications," Applied Energy, Elsevier, vol. 98(C), pages 69-78.
    15. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2018. "Fostering distributed combustion in a swirl burner using prevaporized liquid fuels," Applied Energy, Elsevier, vol. 211(C), pages 513-522.
    16. Tian, Junjian & Liu, Xiang & Shi, Hao & Yao, Yurou & Ni, Zhanshi & Meng, Kengsheng & Hu, Peng & Lin, Qizhao, 2024. "Experimental study on MILD combustion of methane under non-preheated condition in a swirl combustion furnace," Applied Energy, Elsevier, vol. 363(C).
    17. Li, Mingyu & He, Xiaomin & Zhao, Yuling & Jin, Yi & Ge, Zhenghao & Sun, Yuan, 2017. "Dome structure effects on combustion performance of a trapped vortex combustor," Applied Energy, Elsevier, vol. 208(C), pages 72-82.
    18. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2017. "Acoustic and heat release signatures for swirl assisted distributed combustion," Applied Energy, Elsevier, vol. 193(C), pages 125-138.
    19. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2013. "Hydrogen addition effects on high intensity distributed combustion," Applied Energy, Elsevier, vol. 104(C), pages 71-78.
    20. Arghode, Vaibhav K. & Khalil, Ahmed E.E. & Gupta, Ashwani K., 2012. "Fuel dilution and liquid fuel operational effects on ultra-high thermal intensity distributed combustor," Applied Energy, Elsevier, vol. 95(C), pages 132-138.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:148:y:2015:i:c:p:187-195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.