IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v167y2021icp266-281.html
   My bibliography  Save this article

Spatial analysis of indicators affecting the exploitation of shallow geothermal energy at European scale

Author

Listed:
  • Ramos-Escudero, Adela
  • García-Cascales, M. Socorro
  • Cuevas, Jose M.
  • Sanner, Burkhard
  • Urchueguía, Javier F.

Abstract

Shallow Geothermal Energy (SGE) exploited by vertical close loop Ground Source Heat Pumps (GSHP) is a proven, reliable, and widespread renewable heating and cooling technology. However, in many regions there is still a lack of awareness among policy makers and end users, constituting a major constraint to wider deployment of SGE. In order to contribute to its market consolidation, this work focuses on bringing to light relevant spatial information affecting the suitability of SGE exploitation. This information is the result of the systematization of geological, climatic, and environmental open and available data translated into performance indicators. A set of thematic maps was created using Geographic Information Systems (GIS) comprising the European Member States and other European countries. The relative area and the amount of population affected per indicator was spatially analyzed to determine the most common values found and the affected population. The relationship between area percentage and population affected percentage per indicator was also analyzed and allowed to identify the most common indicators values in areas where high energy demands are expected. Additionally, an example of how this data can be used into a Multi-Criteria Decision-Making (MCDM) framework is shown.

Suggested Citation

  • Ramos-Escudero, Adela & García-Cascales, M. Socorro & Cuevas, Jose M. & Sanner, Burkhard & Urchueguía, Javier F., 2021. "Spatial analysis of indicators affecting the exploitation of shallow geothermal energy at European scale," Renewable Energy, Elsevier, vol. 167(C), pages 266-281.
  • Handle: RePEc:eee:renene:v:167:y:2021:i:c:p:266-281
    DOI: 10.1016/j.renene.2020.11.081
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120318309
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.11.081?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gemelli, Alberto & Mancini, Adriano & Longhi, Sauro, 2011. "GIS-based energy-economic model of low temperature geothermal resources: A case study in the Italian Marche region," Renewable Energy, Elsevier, vol. 36(9), pages 2474-2483.
    2. Giambastiani, B.M.S. & Tinti, F. & Mendrinos, D. & Mastrocicco, M., 2014. "Energy performance strategies for the large scale introduction of geothermal energy in residential and industrial buildings: The GEO.POWER project," Energy Policy, Elsevier, vol. 65(C), pages 315-322.
    3. Ramachandra, T.V. & Shruthi, B.V., 2007. "Spatial mapping of renewable energy potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(7), pages 1460-1480, September.
    4. Sánchez-Lozano, Juan M. & Teruel-Solano, Jerónimo & Soto-Elvira, Pedro L. & Socorro García-Cascales, M., 2013. "Geographical Information Systems (GIS) and Multi-Criteria Decision Making (MCDM) methods for the evaluation of solar farms locations: Case study in south-eastern Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 544-556.
    5. Schiel, Kerry & Baume, Olivier & Caruso, Geoffrey & Leopold, Ulrich, 2016. "GIS-based modelling of shallow geothermal energy potential for CO2 emission mitigation in urban areas," Renewable Energy, Elsevier, vol. 86(C), pages 1023-1036.
    6. Francesco Tinti & Sara Kasmaee & Mohamed Elkarmoty & Stefano Bonduà & Villiam Bortolotti, 2018. "Suitability Evaluation of Specific Shallow Geothermal Technologies Using a GIS-Based Multi Criteria Decision Analysis Implementing the Analytic Hierarchic Process," Energies, MDPI, vol. 11(2), pages 1-21, February.
    7. Haehnlein, Stefanie & Bayer, Peter & Blum, Philipp, 2010. "International legal status of the use of shallow geothermal energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2611-2625, December.
    8. Ondreka, Joris & Rüsgen, Maike Inga & Stober, Ingrid & Czurda, Kurt, 2007. "GIS-supported mapping of shallow geothermal potential of representative areas in south-western Germany—Possibilities and limitations," Renewable Energy, Elsevier, vol. 32(13), pages 2186-2200.
    9. Bertermann, D. & Klug, H. & Morper-Busch, L., 2015. "A pan-European planning basis for estimating the very shallow geothermal energy potentials," Renewable Energy, Elsevier, vol. 75(C), pages 335-347.
    10. Li, Jianming & Zhang, Yanjun, 2017. "GIS-supported certainty factor (CF) models for assessment of geothermal potential: A case study of Tengchong County, southwest China," Energy, Elsevier, vol. 140(P1), pages 552-565.
    11. Casasso, Alessandro & Sethi, Rajandrea, 2016. "G.POT: A quantitative method for the assessment and mapping of the shallow geothermal potential," Energy, Elsevier, vol. 106(C), pages 765-773.
    12. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Javadi, Hossein & Urchueguía, Javier F. & Badenes, Borja & Mateo, Miguel Á. & Nejad Ghafar, Ali & Chaudhari, Ojas Arun & Zirgulis, Giedrius & Lemus, Lenin G., 2022. "Laboratory and numerical study on innovative grouting materials applicable to borehole heat exchangers (BHE) and borehole thermal energy storage (BTES) systems," Renewable Energy, Elsevier, vol. 194(C), pages 788-804.
    2. Luka Perković & Domagoj Leko & Amalia Lekić Brettschneider & Hrvoje Mikulčić & Petar S. Varbanov, 2021. "Integration of Photovoltaic Electricity with Shallow Geothermal Systems for Residential Microgrids: Proof of Concept and Techno-Economic Analysis with RES2GEO Model," Energies, MDPI, vol. 14(7), pages 1-21, March.
    3. Ömer Kaya & Kadir Diler Alemdar & Tiziana Campisi & Ahmet Tortum & Merve Kayaci Çodur, 2021. "The Development of Decarbonisation Strategies: A Three-Step Methodology for the Suitable Analysis of Current EVCS Locations Applied to Istanbul, Turkey," Energies, MDPI, vol. 14(10), pages 1-21, May.
    4. Makasis, Nikolas & Gu, Xiaoying & Kreitmair, Monika J. & Narsilio, Guillermo A. & Choudhary, Ruchi, 2023. "Geothermal pavements: A city-scale investigation on providing sustainable heating for the city of Cardiff, UK," Renewable Energy, Elsevier, vol. 218(C).
    5. Galgaro, A. & Di Sipio, E. & Carrera, A. & Dalla Santa, G. & Escudero, A. Ramos & Cuevas, J.M. & Pasquali, R. & Sanner, B. & Bernardi, A., 2022. "European and municipal scale drillability maps: A tool to identify the most suitable techniques to install borehole heat exchangers (BHE) probes," Renewable Energy, Elsevier, vol. 192(C), pages 188-199.
    6. Hans Schwarz & Nikola Jocic & David Bertermann, 2022. "Development of a Calculation Concept for Mapping Specific Heat Extraction for Very Shallow Geothermal Systems," Sustainability, MDPI, vol. 14(7), pages 1-18, April.
    7. Elisa Heim & Marius Laska & Ralf Becker & Norbert Klitzsch, 2022. "Estimating the Subsurface Thermal Conductivity and Its Uncertainty for Shallow Geothermal Energy Use—A Workflow and Geoportal Based on Publicly Available Data," Energies, MDPI, vol. 15(10), pages 1-19, May.
    8. Puppala, Harish & Arora, Manoj Kumar & Garlapati, Nagababu & Bheemaraju, Amarnath, 2023. "GIS-MCDM based framework to evaluate site suitability and CO2 mitigation potential of earth-air-heat exchanger: A case study," Renewable Energy, Elsevier, vol. 216(C).
    9. Mohd Alsaleh & Xiaohui Wang, 2023. "How Does Information and Communication Technology Affect Geothermal Energy Sustainability?," Sustainability, MDPI, vol. 15(2), pages 1-21, January.
    10. Cristina Sáez Blázquez & Ignacio Martín Nieto & Javier Carrasco García & Pedro Carrasco García & Arturo Farfán Martín & Diego González-Aguilera, 2023. "Comparative Analysis of Ground Source and Air Source Heat Pump Systems under Different Conditions and Scenarios," Energies, MDPI, vol. 16(3), pages 1-16, January.
    11. Hu, Ziyuan & Gao, Zongjun & Xu, Xiqiang & Fang, Shaoyan & Zhou, Liangyu & Ji, Deshuai & Li, Fuquan & Feng, Jianguo & Wang, Min, 2022. "Suitability zoning of buried pipe ground source heat pump and shallow geothermal resource evaluation of Linqu County, Shandong Province, China," Renewable Energy, Elsevier, vol. 198(C), pages 1430-1439.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bayer, Peter & Attard, Guillaume & Blum, Philipp & Menberg, Kathrin, 2019. "The geothermal potential of cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 17-30.
    2. Francesco Tinti & Sara Kasmaee & Mohamed Elkarmoty & Stefano Bonduà & Villiam Bortolotti, 2018. "Suitability Evaluation of Specific Shallow Geothermal Technologies Using a GIS-Based Multi Criteria Decision Analysis Implementing the Analytic Hierarchic Process," Energies, MDPI, vol. 11(2), pages 1-21, February.
    3. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    4. Tsagarakis, Konstantinos P. & Efthymiou, Loukia & Michopoulos, Apostolos & Mavragani, Amaryllis & Anđelković, Aleksandar S. & Antolini, Francesco & Bacic, Mario & Bajare, Diana & Baralis, Matteo & Bog, 2020. "A review of the legal framework in shallow geothermal energy in selected European countries: Need for guidelines," Renewable Energy, Elsevier, vol. 147(P2), pages 2556-2571.
    5. Rivera, Jaime A. & Blum, Philipp & Bayer, Peter, 2017. "Increased ground temperatures in urban areas: Estimation of the technical geothermal potential," Renewable Energy, Elsevier, vol. 103(C), pages 388-400.
    6. Alcaraz, Mar & García-Gil, Alejandro & Vázquez-Suñé, Enric & Velasco, Violeta, 2016. "Use rights markets for shallow geothermal energy management," Applied Energy, Elsevier, vol. 172(C), pages 34-46.
    7. Adela Ramos-Escudero & M. Socorro García-Cascales & Javier F. Urchueguía, 2021. "Evaluation of the Shallow Geothermal Potential for Heating and Cooling and Its Integration in the Socioeconomic Environment: A Case Study in the Region of Murcia, Spain," Energies, MDPI, vol. 14(18), pages 1-21, September.
    8. Walch, Alina & Mohajeri, Nahid & Gudmundsson, Agust & Scartezzini, Jean-Louis, 2021. "Quantifying the technical geothermal potential from shallow borehole heat exchangers at regional scale," Renewable Energy, Elsevier, vol. 165(P1), pages 369-380.
    9. Bertermann, D. & Klug, H. & Morper-Busch, L., 2015. "A pan-European planning basis for estimating the very shallow geothermal energy potentials," Renewable Energy, Elsevier, vol. 75(C), pages 335-347.
    10. Tissen, Carolin & Menberg, Kathrin & Benz, Susanne A. & Bayer, Peter & Steiner, Cornelia & Götzl, Gregor & Blum, Philipp, 2021. "Identifying key locations for shallow geothermal use in Vienna," Renewable Energy, Elsevier, vol. 167(C), pages 1-19.
    11. García-Gil, Alejandro & Vázquez-Suñe, Enric & Alcaraz, Maria M. & Juan, Alejandro Serrano & Sánchez-Navarro, José Ángel & Montlleó, Marc & Rodríguez, Gustavo & Lao, José, 2015. "GIS-supported mapping of low-temperature geothermal potential taking groundwater flow into account," Renewable Energy, Elsevier, vol. 77(C), pages 268-278.
    12. Makasis, Nikolas & Gu, Xiaoying & Kreitmair, Monika J. & Narsilio, Guillermo A. & Choudhary, Ruchi, 2023. "Geothermal pavements: A city-scale investigation on providing sustainable heating for the city of Cardiff, UK," Renewable Energy, Elsevier, vol. 218(C).
    13. Böttcher, Fabian & Casasso, Alessandro & Götzl, Gregor & Zosseder, Kai, 2019. "TAP - Thermal aquifer Potential: A quantitative method to assess the spatial potential for the thermal use of groundwater," Renewable Energy, Elsevier, vol. 142(C), pages 85-95.
    14. Li, Zhao & Luo, Zujiang & Wang, Yan & Fan, Guanyu & Zhang, Jianmang, 2022. "Suitability evaluation system for the shallow geothermal energy implementation in region by Entropy Weight Method and TOPSIS method," Renewable Energy, Elsevier, vol. 184(C), pages 564-576.
    15. Casasso, Alessandro & Sethi, Rajandrea, 2017. "Assessment and mapping of the shallow geothermal potential in the province of Cuneo (Piedmont, NW Italy)," Renewable Energy, Elsevier, vol. 102(PB), pages 306-315.
    16. Alessandro Sbrana & Paola Marianelli & Giuseppe Pasquini & Paolo Costantini & Francesco Palmieri & Valentina Ciani & Michele Sbrana, 2018. "The Integration of 3D Modeling and Simulation to Determine the Energy Potential of Low-Temperature Geothermal Systems in the Pisa (Italy) Sedimentary Plain," Energies, MDPI, vol. 11(6), pages 1-20, June.
    17. Miocic, Johannes M. & Krecher, Marc, 2022. "Estimation of shallow geothermal potential to meet building heating demand on a regional scale," Renewable Energy, Elsevier, vol. 185(C), pages 629-640.
    18. Korhonen, Kimmo & Markó, Ábel & Bischoff, Alan & Szijártó, Márk & Mádl-Szőnyi, Judit, 2023. "Infinite borehole field model—a new approach to estimate the shallow geothermal potential of urban areas applied to central Budapest, Hungary," Renewable Energy, Elsevier, vol. 208(C), pages 263-274.
    19. Epting, Jannis & Müller, Matthias H. & Genske, Dieter & Huggenberger, Peter, 2018. "Relating groundwater heat-potential to city-scale heat-demand: A theoretical consideration for urban groundwater resource management," Applied Energy, Elsevier, vol. 228(C), pages 1499-1505.
    20. Elisa Heim & Marius Laska & Ralf Becker & Norbert Klitzsch, 2022. "Estimating the Subsurface Thermal Conductivity and Its Uncertainty for Shallow Geothermal Energy Use—A Workflow and Geoportal Based on Publicly Available Data," Energies, MDPI, vol. 15(10), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:167:y:2021:i:c:p:266-281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.