IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v304y2024ics0360544224018322.html
   My bibliography  Save this article

Spatial analysis of thermal groundwater use based on optimal sizing and placement of well doublets

Author

Listed:
  • Halilovic, Smajil
  • Böttcher, Fabian
  • Zosseder, Kai
  • Hamacher, Thomas

Abstract

This paper proposes an approach to optimize the technical potential of thermal groundwater use by determining the optimal sizing and placement of extraction–injection well doublets. The approach quantifies the maximum technically achievable volume of extracted groundwater in a given area and, hence, the amount of heat exchanged with the aquifer, considering relevant regulatory and hydraulic constraints. The hydraulic constraints ensure acceptable drawdown and rise of groundwater in extraction and injection wells for sustainable use, respectively, prevention of internal hydraulic breakthroughs, and adequate spacing between neighboring doublets. Analytical expressions representing these constraints are integrated into a mixed-integer linear optimization framework allowing efficient application to relatively large areas. The applicability of the approach is demonstrated by a real case study in Munich, where the geothermal potential of each city block is optimized independently. Six optimization scenarios, differing in terms of required minimum installed doublet capacity and spacings between doublets, underline the adaptability of the approach. The approach provides a comprehensive and optimized potential assessment and can be readily applied to other geographic locations. This makes it a valuable tool for thermal groundwater management and spatial energy planning, such as the planning of fourth and fifth generation district heating systems.

Suggested Citation

  • Halilovic, Smajil & Böttcher, Fabian & Zosseder, Kai & Hamacher, Thomas, 2024. "Spatial analysis of thermal groundwater use based on optimal sizing and placement of well doublets," Energy, Elsevier, vol. 304(C).
  • Handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224018322
    DOI: 10.1016/j.energy.2024.132058
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224018322
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224018322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.