IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v136y2019icp955-967.html
   My bibliography  Save this article

Molecular simulation of the structure and physical properties of alkali nitrate salts for thermal energy storage

Author

Listed:
  • Ni, Haiou
  • Wu, Jie
  • Sun, Ze
  • Lu, Guimin
  • Yu, Jianguo

Abstract

Molecular dynamics simulation method with an improved flexible nitrate model was used in this paper to study the structure and properties of molten LiNO3, NaNO3, and KNO3. Both local structure and physical properties including densities, thermal conductivities, viscosities and heat capacities of the salts were simulated comprehensively. Different simulation methods were used and the results were compared with experimental data. The relationship between the structure and properties of the salts were discussed. Besides, a binary mixture of NaNO3 and KNO3 was also simulated to verify the applicability of the force field and simulation method for salt mixtures. The results indicate that the force field and simulation methods adopted in this paper work well in predicting the properties of both single nitrate salts and their mixtures. This paper did a basis job for further investigation into the simulation of nitrate salt mixtures used in thermal energy storage.

Suggested Citation

  • Ni, Haiou & Wu, Jie & Sun, Ze & Lu, Guimin & Yu, Jianguo, 2019. "Molecular simulation of the structure and physical properties of alkali nitrate salts for thermal energy storage," Renewable Energy, Elsevier, vol. 136(C), pages 955-967.
  • Handle: RePEc:eee:renene:v:136:y:2019:i:c:p:955-967
    DOI: 10.1016/j.renene.2019.01.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119300448
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.01.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vignarooban, K. & Xu, Xinhai & Arvay, A. & Hsu, K. & Kannan, A.M., 2015. "Heat transfer fluids for concentrating solar power systems – A review," Applied Energy, Elsevier, vol. 146(C), pages 383-396.
    2. Ding, Jing & Pan, Gechuanqi & Du, Lichan & Lu, Jianfeng & Wang, Weilong & Wei, Xiaolan & Li, Jiang, 2018. "Molecular dynamics simulations of the local structures and transport properties of Na2CO3 and K2CO3," Applied Energy, Elsevier, vol. 227(C), pages 555-563.
    3. Pelay, Ugo & Luo, Lingai & Fan, Yilin & Stitou, Driss & Rood, Mark, 2017. "Thermal energy storage systems for concentrated solar power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 82-100.
    4. Fernández, A.G. & Ushak, S. & Galleguillos, H. & Pérez, F.J., 2014. "Development of new molten salts with LiNO3 and Ca(NO3)2 for energy storage in CSP plants," Applied Energy, Elsevier, vol. 119(C), pages 131-140.
    5. Wang, Tao & Mantha, Divakar & Reddy, Ramana G., 2013. "Novel low melting point quaternary eutectic system for solar thermal energy storage," Applied Energy, Elsevier, vol. 102(C), pages 1422-1429.
    6. Nunes, V.M.B. & Queirós, C.S. & Lourenço, M.J.V. & Santos, F.J.V. & Nieto de Castro, C.A., 2016. "Molten salts as engineering fluids – A review," Applied Energy, Elsevier, vol. 183(C), pages 603-611.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruan, Zhao-Hui & Gao, Peng & Yuan, Yuan & Tan, He-Ping, 2022. "Theoretical estimation of temperature-dependent radiation properties of molten solar salt using molecular dynamics and first principles," Energy, Elsevier, vol. 246(C).
    2. Luo, Qingyang & Liu, Xianglei & Wang, Haolei & Xu, Qiao & Tian, Yang & Liang, Ting & Liu, Qibin & Liu, Zhan & Yang, Xiaohu & Xuan, Yimin & Li, Yongliang & Ding, Yulong, 2022. "Synergetic enhancement of heat storage density and heat transport ability of phase change materials inlaid in 3D hierarchical ceramics," Applied Energy, Elsevier, vol. 306(PA).
    3. Wu, Chunlei & Wang, Qing & Wang, Xinmin & Sun, Shipeng & Wang, Yuqi & Wu, Shuang & Bai, Jingru & Sheng, Hongyu & Zhang, Jinghui, 2024. "Al2O3 nanoparticles integration for comprehensive enhancement of eutectic salt thermal performance: Experimental design, molecular dynamics calculations, and system simulation studies," Energy, Elsevier, vol. 292(C).
    4. Wu, Chunlei & Wang, Qing & Wang, Xinmin & Sun, Shipeng & Bai, Jingru & Cui, Da & Pan, Shuo & Sheng, Hongyu, 2024. "Effect of Al2O3 nanoparticle dispersion on the thermal properties of a eutectic salt for solar power applications: Experimental and molecular simulation studies," Energy, Elsevier, vol. 288(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Delise, T. & Tizzoni, A.C. & Menale, C. & Telling, M.T.F. & Bubbico, R. & Crescenzi, T. & Corsaro, N. & Sau, S. & Licoccia, S., 2020. "Technical and economic analysis of a CSP plant presenting a low freezing ternary mixture as storage and transfer fluid," Applied Energy, Elsevier, vol. 265(C).
    2. Fernández, Angel G. & Gomez-Vidal, Judith & Oró, Eduard & Kruizenga, Alan & Solé, Aran & Cabeza, Luisa F., 2019. "Mainstreaming commercial CSP systems: A technology review," Renewable Energy, Elsevier, vol. 140(C), pages 152-176.
    3. Du, Lichan & Ding, Jing & Tian, Heqing & Wang, Weilong & Wei, Xiaolan & Song, Ming, 2017. "Thermal properties and thermal stability of the ternary eutectic salt NaCl-CaCl2-MgCl2 used in high-temperature thermal energy storage process," Applied Energy, Elsevier, vol. 204(C), pages 1225-1230.
    4. Wei, Xiaolan & Qin, Bo & Yang, Chuntao & Wang, Weilong & Ding, Jing & Wang, Yan & Peng, Qiang, 2019. "Nox emission of ternary nitrate molten salts in high-temperature heat storage and transfer process," Applied Energy, Elsevier, vol. 236(C), pages 147-154.
    5. Xu, Xinhai & Vignarooban, K. & Xu, Ben & Hsu, K. & Kannan, A.M., 2016. "Prospects and problems of concentrating solar power technologies for power generation in the desert regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1106-1131.
    6. Li, Xiang & Wang, Yang & Wu, Shuang & Xie, Leidong, 2018. "Preparation and investigation of multicomponent alkali nitrate/nitrite salts for low temperature thermal energy storage," Energy, Elsevier, vol. 160(C), pages 1021-1029.
    7. Villada, Carolina & Bonk, Alexander & Bauer, Thomas & Bolívar, Francisco, 2018. "High-temperature stability of nitrate/nitrite molten salt mixtures under different atmospheres," Applied Energy, Elsevier, vol. 226(C), pages 107-115.
    8. Ortiz, C. & Valverde, J.M. & Chacartegui, R. & Perez-Maqueda, L.A. & Giménez, P., 2019. "The Calcium-Looping (CaCO3/CaO) process for thermochemical energy storage in Concentrating Solar Power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    9. Na Li & Yang Wang & Qi Liu & Hao Peng, 2022. "Evaluation of Thermal-Physical Properties of Novel Multicomponent Molten Nitrate Salts for Heat Transfer and Storage," Energies, MDPI, vol. 15(18), pages 1-17, September.
    10. Nunes, V.M.B. & Queirós, C.S. & Lourenço, M.J.V. & Santos, F.J.V. & Nieto de Castro, C.A., 2016. "Molten salts as engineering fluids – A review," Applied Energy, Elsevier, vol. 183(C), pages 603-611.
    11. Yang, Chuntao & Wei, Xiaolan & Wang, Weilong & Lin, Zihao & Ding, Jing & Wang, Yan & Peng, Qiang & Yang, Jianping, 2016. "NOx emissions and the component changes of ternary molten nitrate salts in thermal energy storage process," Applied Energy, Elsevier, vol. 184(C), pages 346-352.
    12. Liu, Ming & Steven Tay, N.H. & Bell, Stuart & Belusko, Martin & Jacob, Rhys & Will, Geoffrey & Saman, Wasim & Bruno, Frank, 2016. "Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1411-1432.
    13. Mostafavi Tehrani, S. Saeed & Shoraka, Yashar & Nithyanandam, Karthik & Taylor, Robert A., 2019. "Shell-and-tube or packed bed thermal energy storage systems integrated with a concentrated solar power: A techno-economic comparison of sensible and latent heat systems," Applied Energy, Elsevier, vol. 238(C), pages 887-910.
    14. Adrián Caraballo & Santos Galán-Casado & Ángel Caballero & Sara Serena, 2021. "Molten Salts for Sensible Thermal Energy Storage: A Review and an Energy Performance Analysis," Energies, MDPI, vol. 14(4), pages 1-15, February.
    15. Feng, Penghui & Wu, Zhen & Zhang, Yang & Yang, Fusheng & Wang, Yuqi & Zhang, Zaoxiao, 2018. "Multi-level configuration and optimization of a thermal energy storage system using a metal hydride pair," Applied Energy, Elsevier, vol. 217(C), pages 25-36.
    16. Bai, Zhang & Gu, Yucheng & Wang, Shuoshuo & Jiang, Tieliu & Kong, Debin & Li, Qi, 2023. "Applying the solar solid particles as heat carrier to enhance the solar-driven biomass gasification with dynamic operation power generation performance analysis," Applied Energy, Elsevier, vol. 351(C).
    17. Sau, S. & Corsaro, N. & Crescenzi, T. & D’Ottavi, C. & Liberatore, R. & Licoccia, S. & Russo, V. & Tarquini, P. & Tizzoni, A.C., 2016. "Techno-economic comparison between CSP plants presenting two different heat transfer fluids," Applied Energy, Elsevier, vol. 168(C), pages 96-109.
    18. Arias, I. & Cardemil, J. & Zarza, E. & Valenzuela, L. & Escobar, R., 2022. "Latest developments, assessments and research trends for next generation of concentrated solar power plants using liquid heat transfer fluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    19. Haiming Long & Yunkun Lu & Liang Chang & Haifeng Zhang & Jingcen Zhang & Gaoqun Zhang & Junjie Hao, 2022. "Molecular Dynamics Simulation of Thermophysical Properties and the Microstructure of Na 2 CO 3 Heat Storage Materials," Energies, MDPI, vol. 15(19), pages 1-13, September.
    20. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:136:y:2019:i:c:p:955-967. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.