IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v246y2022ics0360544222002821.html
   My bibliography  Save this article

Theoretical estimation of temperature-dependent radiation properties of molten solar salt using molecular dynamics and first principles

Author

Listed:
  • Ruan, Zhao-Hui
  • Gao, Peng
  • Yuan, Yuan
  • Tan, He-Ping

Abstract

The use of solar salt is important in modern solar energy utilization technology, i.e. concentrating solar power. However, there are few high-temperature-dependent radiation property data that can be used to accurately determine the temperature field, which hinders its further application. Thus, a theoretical approach using a combination of molecular dynamics and first principle methods is adopted to predict the radiation properties of molten solar salt from 525 to 875 K, which covers its working temperature range. According to the theoretical computation results, the main absorption region is observed when the wavelength is less than 500 nm. There are two absorption peaks located at approximately 130 and 250 nm, and there are also two refractive index peaks located at approximately 160 and 400 nm, which are slightly different from the absorption peaks. Moreover, increasing the working temperature subtly decreases the refractive index and extinction coefficient simultaneously. In addition, by investigating the effects of the simulation size, we found a 195-atoms system that satisfies the requirements for computations of related thermodynamic quantities. We believe that the results of this study show the significance of solar salt in the future applications.

Suggested Citation

  • Ruan, Zhao-Hui & Gao, Peng & Yuan, Yuan & Tan, He-Ping, 2022. "Theoretical estimation of temperature-dependent radiation properties of molten solar salt using molecular dynamics and first principles," Energy, Elsevier, vol. 246(C).
  • Handle: RePEc:eee:energy:v:246:y:2022:i:c:s0360544222002821
    DOI: 10.1016/j.energy.2022.123379
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222002821
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123379?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Huili & Kong, Weibin & Tan, Tianwei & Baeyens, Jan, 2017. "High-efficiency concentrated solar power plants need appropriate materials for high-temperature heat capture, conveying and storage," Energy, Elsevier, vol. 139(C), pages 52-64.
    2. Pan, Gechuanqi & Wei, Xiaolan & Yu, Chao & Lu, Yutong & Li, Jiang & Ding, Jing & Wang, Weilong & Yan, Jinyue, 2020. "Thermal performance of a binary carbonate molten eutectic salt for high-temperature energy storage applications," Applied Energy, Elsevier, vol. 262(C).
    3. Zhu, Tao & Li, Qiang & Xuan, Yimin & Liu, Dong & Hong, Hui, 2019. "Performance investigation of a hybrid photovoltaics and mid-temperature methanol thermochemistry system," Applied Energy, Elsevier, vol. 256(C).
    4. Ni, Haiou & Wu, Jie & Sun, Ze & Lu, Guimin & Yu, Jianguo, 2019. "Molecular simulation of the structure and physical properties of alkali nitrate salts for thermal energy storage," Renewable Energy, Elsevier, vol. 136(C), pages 955-967.
    5. Awad, Afrah & Navarro, Helena & Ding, Yulong & Wen, Dongsheng, 2018. "Thermal-physical properties of nanoparticle-seeded nitrate molten salts," Renewable Energy, Elsevier, vol. 120(C), pages 275-288.
    6. Ding, Jing & Pan, Gechuanqi & Du, Lichan & Lu, Jianfeng & Wang, Weilong & Wei, Xiaolan & Li, Jiang, 2018. "Molecular dynamics simulations of the local structures and transport properties of Na2CO3 and K2CO3," Applied Energy, Elsevier, vol. 227(C), pages 555-563.
    7. Wang, Wen-Qi & Qiu, Yu & Li, Ming-Jia & He, Ya-Ling & Cheng, Ze-Dong, 2020. "Coupled optical and thermal performance of a fin-like molten salt receiver for the next-generation solar power tower," Applied Energy, Elsevier, vol. 272(C).
    8. Ding, Jing & Du, Lichan & Pan, Gechuanqi & Lu, Jianfeng & Wei, Xiaolan & Li, Jiang & Wang, Weilong & Yan, Jinyue, 2018. "Molecular dynamics simulations of the local structures and thermodynamic properties on molten alkali carbonate K2CO3," Applied Energy, Elsevier, vol. 220(C), pages 536-544.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xue, Xue & Liu, Xiang & Zhu, Yifan & Yuan, Lei & Zhu, Ying & Jin, Kelang & Zhang, Lei & Zhou, Hao, 2023. "Numerical modeling and parametric study of the heat storage process of the 1.05 MW molten salt furnace," Energy, Elsevier, vol. 282(C).
    2. Tian, Heqing & Kou, Zhaoyang & Pang, Xinchang & Yu, Yinsheng, 2023. "Molecular dynamics simulation on thermophysical properties and local structure of ternary chloride salt for thermal energy storage and transfer system," Energy, Elsevier, vol. 284(C).
    3. Dong, Yan & Zhang, Xinping & Chen, Lingling & Meng, Weifeng & Wang, Cunhai & Cheng, Ziming & Liang, Huaxu & Wang, Fuqiang, 2023. "Progress in passive daytime radiative cooling: A review from optical mechanism, performance test, and application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    4. Wei, Linyang & Li, Guojun & Sun, Shuangcheng, 2023. "Simultaneous estimation of thermal and optical properties of molten salt based on improved colliding bodies optimization," Renewable Energy, Elsevier, vol. 217(C).
    5. Shi, Xuhang & Song, Jintao & Cheng, Ziming & Liang, Huaxu & Dong, Yan & Wang, Fuqiang & Zhang, Wenjing, 2023. "Radiative intensity regulation to match energy conversion on demand in solar methane dry reforming to improve solar to fuel conversion efficiency," Renewable Energy, Elsevier, vol. 207(C), pages 436-446.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Heqing & Kou, Zhaoyang & Pang, Xinchang & Yu, Yinsheng, 2023. "Molecular dynamics simulation on thermophysical properties and local structure of ternary chloride salt for thermal energy storage and transfer system," Energy, Elsevier, vol. 284(C).
    2. Luo, Qingyang & Liu, Xianglei & Wang, Haolei & Xu, Qiao & Tian, Yang & Liang, Ting & Liu, Qibin & Liu, Zhan & Yang, Xiaohu & Xuan, Yimin & Li, Yongliang & Ding, Yulong, 2022. "Synergetic enhancement of heat storage density and heat transport ability of phase change materials inlaid in 3D hierarchical ceramics," Applied Energy, Elsevier, vol. 306(PA).
    3. Wu, Chunlei & Wang, Qing & Wang, Xinmin & Sun, Shipeng & Bai, Jingru & Cui, Da & Pan, Shuo & Sheng, Hongyu, 2024. "Effect of Al2O3 nanoparticle dispersion on the thermal properties of a eutectic salt for solar power applications: Experimental and molecular simulation studies," Energy, Elsevier, vol. 288(C).
    4. Chen, Cheng & Volpe, Roberto & Jiang, Xi, 2021. "A molecular investigation on lignin thermochemical conversion and carbonaceous organics deposition induced catalyst deactivation," Applied Energy, Elsevier, vol. 302(C).
    5. Nie, Xianhua & Du, Zhenyu & Zhao, Li & Deng, Shuai & Zhang, Yue, 2019. "Molecular dynamics study on transport properties of supercritical working fluids: Literature review and case study," Applied Energy, Elsevier, vol. 250(C), pages 63-80.
    6. Wu, Chunlei & Wang, Qing & Wang, Xinmin & Sun, Shipeng & Wang, Yuqi & Wu, Shuang & Bai, Jingru & Sheng, Hongyu & Zhang, Jinghui, 2024. "Al2O3 nanoparticles integration for comprehensive enhancement of eutectic salt thermal performance: Experimental design, molecular dynamics calculations, and system simulation studies," Energy, Elsevier, vol. 292(C).
    7. Haiming Long & Yunkun Lu & Liang Chang & Haifeng Zhang & Jingcen Zhang & Gaoqun Zhang & Junjie Hao, 2022. "Molecular Dynamics Simulation of Thermophysical Properties and the Microstructure of Na 2 CO 3 Heat Storage Materials," Energies, MDPI, vol. 15(19), pages 1-13, September.
    8. Liu, Yilin & Cui, Xin & Yan, Weichao & Wang, Jiawei & Su, Jincai & Jin, Liwen, 2022. "A molecular level based parametric study of transport behavior in different polymer composite membranes for water vapor separation," Applied Energy, Elsevier, vol. 326(C).
    9. Luo, Qingyang & Liu, Xianglei & Xu, Qiao & Tian, Yang & Yao, Haichen & Wang, Jianguo & Lv, Shushan & Dang, Chunzhuo & Xuan, Yimin, 2023. "Ceramic nanoparticles enhancement of latent heat thermal energy storage properties for LiNO3/NaCl: Evaluation from material to system level," Applied Energy, Elsevier, vol. 331(C).
    10. Pan, Gechuanqi & Wei, Xiaolan & Yu, Chao & Lu, Yutong & Li, Jiang & Ding, Jing & Wang, Weilong & Yan, Jinyue, 2020. "Thermal performance of a binary carbonate molten eutectic salt for high-temperature energy storage applications," Applied Energy, Elsevier, vol. 262(C).
    11. Jingyu Zhong & Jing Ding & Jianfeng Lu & Xiaolan Wei & Weilong Wang, 2022. "Thermal Stability Calculation and Experimental Investigation of Common Binary Chloride Molten Salts Applied in Concentrating Solar Power Plants," Energies, MDPI, vol. 15(7), pages 1-31, March.
    12. Navarrete, Nuria & Mondragón, Rosa & Wen, Dongsheng & Navarro, Maria Elena & Ding, Yulong & Juliá, J. Enrique, 2019. "Thermal energy storage of molten salt –based nanofluid containing nano-encapsulated metal alloy phase change materials," Energy, Elsevier, vol. 167(C), pages 912-920.
    13. Merad, Faycel & Labar, Hocine & Samira KELAIAIA, Mounia & Necaibia, Salah & Djelailia, Okba, 2019. "A maximum power control based on flexible collector applied to concentrator solar power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 315-331.
    14. Qiu, Yu & Xu, Yucong & Li, Qing & Wang, Jikang & Wang, Qiliang & Liu, Bin, 2021. "Efficiency enhancement of a solar trough collector by combining solar and hot mirrors," Applied Energy, Elsevier, vol. 299(C).
    15. Liu, Jinjin & Xiao, Xin, 2023. "Molecular dynamics investigation of thermo-physical properties of molten salt with nanoparticles for solar energy application," Energy, Elsevier, vol. 282(C).
    16. Adrián Caraballo & Santos Galán-Casado & Ángel Caballero & Sara Serena, 2021. "Molten Salts for Sensible Thermal Energy Storage: A Review and an Energy Performance Analysis," Energies, MDPI, vol. 14(4), pages 1-15, February.
    17. Wang, Wen-Qi & Li, Ming-Jia & Jiang, Rui & Hu, Yi-Huang & He, Ya-Ling, 2022. "Receiver with light-trapping nanostructured coating: A possible way to achieve high-efficiency solar thermal conversion for the next-generation concentrating solar power," Renewable Energy, Elsevier, vol. 185(C), pages 159-171.
    18. Saranprabhu, M.K. & Rajan, K.S., 2019. "Magnesium oxide nanoparticles dispersed solar salt with improved solid phase thermal conductivity and specific heat for latent heat thermal energy storage," Renewable Energy, Elsevier, vol. 141(C), pages 451-459.
    19. Khamlich, Imane & Zeng, Kuo & Flamant, Gilles & Baeyens, Jan & Zou, Chongzhe & Li, Jun & Yang, Xinyi & He, Xiao & Liu, Qingchuan & Yang, Haiping & Yang, Qing & Chen, Hanping, 2021. "Technical and economic assessment of thermal energy storage in concentrated solar power plants within a spot electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    20. Wang, Wen-Qi & Li, Ming-Jia & Cheng, Ze-Dong & Li, Dong & Liu, Zhan-Bin, 2021. "Coupled optical-thermal-stress characteristics of a multi-tube external molten salt receiver for the next generation concentrating solar power," Energy, Elsevier, vol. 233(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:246:y:2022:i:c:s0360544222002821. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.