A simple but effective design to enhance the performance and durability of direct carbon solid oxide fuel cells
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2021.116586
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Xu, Haoran & Chen, Bin & Tan, Peng & Zhang, Houcheng & Yuan, Jinliang & Liu, Jiang & Ni, Meng, 2017. "Performance improvement of a direct carbon solid oxide fuel cell system by combining with a Stirling cycle," Energy, Elsevier, vol. 140(P1), pages 979-987.
- Wei Kong & Xiang Gao & Shixue Liu & Shichuan Su & Daifen Chen, 2014. "Optimization of the Interconnect Ribs for a Cathode-Supported Solid Oxide Fuel Cell," Energies, MDPI, vol. 7(1), pages 1-19, January.
- van Biert, L. & Visser, K. & Aravind, P.V., 2020. "A comparison of steam reforming concepts in solid oxide fuel cell systems," Applied Energy, Elsevier, vol. 264(C).
- Xu, Haoran & Chen, Bin & Liu, Jiang & Ni, Meng, 2016. "Modeling of direct carbon solid oxide fuel cell for CO and electricity cogeneration," Applied Energy, Elsevier, vol. 178(C), pages 353-362.
- Xie, Heping & Zhai, Shuo & Chen, Bin & Liu, Tao & Zhang, Yuan & Ni, Meng & Shao, Zongping, 2020. "Coal pretreatment and Ag-infiltrated anode for high-performance hybrid direct coal fuel cell," Applied Energy, Elsevier, vol. 260(C).
- Wu, Hao & Xiao, Jie & Zeng, Xiaoyuan & Li, Xue & Yang, Jing & Zou, Yuling & Liu, Sudongfang & Dong, Peng & Zhang, Yingjie & Liu, Jiang, 2019. "A high performance direct carbon solid oxide fuel cell – A green pathway for brown coal utilization," Applied Energy, Elsevier, vol. 248(C), pages 679-687.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Siyu Lu & Man Zhang & Jie Wu & Wei Kong, 2022. "Performance Investigation on Mono-Block-Layer Build Type Solid Oxide Fuel Cells with a Vertical Rib Design," Energies, MDPI, vol. 15(3), pages 1-12, January.
- Zeyu Lin & Hamdi Ayed & Belgacem Bouallegue & Hana Tomaskova & Saeid Jafarzadeh Ghoushchi & Gholamreza Haseli, 2021. "An Integrated Mathematical Attitude Utilizing Fully Fuzzy BWM and Fuzzy WASPAS for Risk Evaluation in a SOFC," Mathematics, MDPI, vol. 9(18), pages 1-18, September.
- Han, Tingting & Li, Lin & Xie, Yujiao & Zhang, Jinjin & Meng, Xiuxia & Yu, Fangyong & Lup, Andrew Ng Kay & Sunarso, Jaka & Yang, Naitao, 2024. "New insights into single-step fabrication of finger-like anode/electrolyte for high-performance direct carbon solid oxide fuel cells: Experimental and simulation studies," Applied Energy, Elsevier, vol. 354(PB).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chen, Qianyang & Qiu, Qianyuan & Yan, Xiaomin & Zhou, Mingyang & Zhang, Yapeng & Liu, Zhijun & Cai, Weizi & Wang, Wei & Liu, Jiang, 2020. "A compact and seal-less direct carbon solid oxide fuel cell stack stepping into practical application," Applied Energy, Elsevier, vol. 278(C).
- Xie, Yongmin & Xiao, Jie & Liu, Qingsheng & Wang, Xiaoqiang & Liu, Jiang & Wu, Peijia & Ouyang, Shaobo, 2021. "Highly efficient utilization of walnut shell biochar through a facile designed portable direct carbon solid oxide fuel cell stack," Energy, Elsevier, vol. 227(C).
- Xu, Haoran & Chen, Bin & Tan, Peng & Xuan, Jin & Maroto-Valer, M. Mercedes & Farrusseng, David & Sun, Qiong & Ni, Meng, 2019. "Modeling of all-porous solid oxide fuel cells with a focus on the electrolyte porosity design," Applied Energy, Elsevier, vol. 235(C), pages 602-611.
- Xu, Haoran & Chen, Bin & Tan, Peng & Cai, Weizi & Wu, Yiyang & Zhang, Houcheng & Ni, Meng, 2018. "A feasible way to handle the heat management of direct carbon solid oxide fuel cells," Applied Energy, Elsevier, vol. 226(C), pages 881-890.
- Mingfei Li & Jingjing Wang & Zhengpeng Chen & Xiuyang Qian & Chuanqi Sun & Di Gan & Kai Xiong & Mumin Rao & Chuangting Chen & Xi Li, 2024. "A Comprehensive Review of Thermal Management in Solid Oxide Fuel Cells: Focus on Burners, Heat Exchangers, and Strategies," Energies, MDPI, vol. 17(5), pages 1-30, February.
- Cerciello, Francesca & Coppola, Antonio & Lacovig, Paolo & Senneca, Osvalda & Salatino, Piero, 2021. "Characterization of surface-oxides on char under periodically changing oxidation/desorption conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
- Despina Vamvuka & George Tsagris & Christia Loulashi, 2023. "Co-Gasification Performance of Low-Quality Lignite with Woody Wastes Using Greenhouse Gas CO 2 —A TG–MS Study," Sustainability, MDPI, vol. 15(12), pages 1-12, June.
- Amiri, Hamed & Sotoodeh, Amir Farhang & Amidpour, Majid, 2021. "A new combined heating and power system driven by biomass for total-site utility applications," Renewable Energy, Elsevier, vol. 163(C), pages 1138-1152.
- Xu, Haoran & Chen, Bin & Tan, Peng & Zhang, Houcheng & Yuan, Jinliang & Liu, Jiang & Ni, Meng, 2017. "Performance improvement of a direct carbon solid oxide fuel cell system by combining with a Stirling cycle," Energy, Elsevier, vol. 140(P1), pages 979-987.
- Ramadhani, F. & Hussain, M.A. & Mokhlis, H. & Hajimolana, S., 2017. "Optimization strategies for Solid Oxide Fuel Cell (SOFC) application: A literature survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 460-484.
- Yu, Fangyong & Xiao, Jie & Zhang, Yapeng & Cai, Weizi & Xie, Yongmin & Yang, Naitao & Liu, Jiang & Liu, Meilin, 2019. "New insights into carbon deposition mechanism of nickel/yttrium-stabilized zirconia cermet from methane by in situ investigation," Applied Energy, Elsevier, vol. 256(C).
- Wang, Yang & Wu, Chengru & Zhao, Siyuan & Wang, Jian & Zu, Bingfeng & Han, Minfang & Du, Qing & Ni, Meng & Jiao, Kui, 2022. "Coupling deep learning and multi-objective genetic algorithms to achieve high performance and durability of direct internal reforming solid oxide fuel cell," Applied Energy, Elsevier, vol. 315(C).
- Fu, Quanrong & Tian, Chunyu & Hun, Lianming & Wang, Xin & Li, Zhiyi & Liu, Zhijun & Wei, Wei, 2024. "Ni agglomeration and performance degradation of solid oxide fuel cell: A model-based quantitative study and microstructure optimization," Energy, Elsevier, vol. 289(C).
- Zeng, Zezhi & Qian, Yuping & Zhang, Yangjun & Hao, Changkun & Dan, Dan & Zhuge, Weilin, 2020. "A review of heat transfer and thermal management methods for temperature gradient reduction in solid oxide fuel cell (SOFC) stacks," Applied Energy, Elsevier, vol. 280(C).
- Jee Min Park & Dae Yun Kim & Jong Dae Baek & Yong-Jin Yoon & Pei-Chen Su & Seong Hyuk Lee, 2018. "Effect of Electrolyte Thickness on Electrochemical Reactions and Thermo-Fluidic Characteristics inside a SOFC Unit Cell," Energies, MDPI, vol. 11(3), pages 1-15, February.
- Eun-Jung Choi & Sangseok Yu & Ji-Min Kim & Sang-Min Lee, 2021. "Model-Based System Performance Analysis of a Solid Oxide Fuel Cell System with Anode Off-Gas Recirculation," Energies, MDPI, vol. 14(12), pages 1-22, June.
- Xu, Qidong & Xia, Lingchao & He, Qijiao & Guo, Zengjia & Ni, Meng, 2021. "Thermo-electrochemical modelling of high temperature methanol-fuelled solid oxide fuel cells," Applied Energy, Elsevier, vol. 291(C).
- Xu, Haoran & Chen, Bin & Tan, Peng & Cai, Weizi & He, Wei & Farrusseng, David & Ni, Meng, 2018. "Modeling of all porous solid oxide fuel cells," Applied Energy, Elsevier, vol. 219(C), pages 105-113.
- Emadi, Mohammad Ali & Chitgar, Nazanin & Oyewunmi, Oyeniyi A. & Markides, Christos N., 2020. "Working-fluid selection and thermoeconomic optimisation of a combined cycle cogeneration dual-loop organic Rankine cycle (ORC) system for solid oxide fuel cell (SOFC) waste-heat recovery," Applied Energy, Elsevier, vol. 261(C).
- Guk, Erdogan & Kim, Jung-Sik & Ranaweera, Manoj & Venkatesan, Vijay & Jackson, Lisa, 2018. "In-situ monitoring of temperature distribution in operating solid oxide fuel cell cathode using proprietary sensory techniques versus commercial thermocouples," Applied Energy, Elsevier, vol. 230(C), pages 551-562.
More about this item
Keywords
Direct carbon fuel cell; Solid oxide fuel cell; Boudouard reaction; Temperature; Carbon;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:287:y:2021:i:c:s0306261921001306. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.