IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v225y2018icp922-933.html
   My bibliography  Save this article

An experimental study on the operational characteristics of a direct expansion based enhanced dehumidification air conditioning system

Author

Listed:
  • Chen, Wenjing
  • Chan, Ming-yin
  • Weng, Wenbing
  • Yan, Huaxia
  • Deng, Shiming

Abstract

Once a conventional On-Off controlled single evaporator direct expansion air conditioning (A/C) system is installed, it has to be operated at different seasonal cooling load situations, and hence would have a hard time in trying to maintain the desired indoor thermal environment at all times, unless complicated and costly supplementary measures to provide variable dehumidification capacity are provided. Therefore, a novel standalone enhanced dehumidification air conditioning (EDAC) system was proposed based on multi-evaporator air conditioning technology. There were two evaporators in the proposed EDAC system, and the mass flow rates of both refrigerant and air to both evaporators can be varied. This paper reports on an experimental study on the operational characteristics of a prototype experimental EDAC system with both evaporators operated. Using the prototype experimental EDAC system, extensive experimental work has been carried out. During the experiments, constant compressor and supply fan speeds were used, but the refrigerant and air mass flow rates to both evaporators were varied, at different inlet air states to the experimental EDAC system. The experimental results demonstrated that at a fixed inlet air state, varying refrigerant and air mass flow rates to both evaporators led to outputting varied total cooling capacity (TCC) and equipment sensible heat ratio (E SHR) from the experimental EDAC system. For example, at an inlet air state of 26 °C and 50% RH, TCC varied from 4.5 kW to 5.32 kW and E SHR from 0.63 to 0.7. Furthermore, TCC and E SHR were mutually constrained within an irregular area in a TCC - E SHR diagram. Different inlet air states would result in shifted position of, or varied shape of an irregular area. Therefore, the use of the proposed EDAC system could provide variable output sensible and latent cooling capacity to deal with variable indoor space thermal load, so that achieving better indoor humidity and thus thermal control is possible with the proposed EDAC system.

Suggested Citation

  • Chen, Wenjing & Chan, Ming-yin & Weng, Wenbing & Yan, Huaxia & Deng, Shiming, 2018. "An experimental study on the operational characteristics of a direct expansion based enhanced dehumidification air conditioning system," Applied Energy, Elsevier, vol. 225(C), pages 922-933.
  • Handle: RePEc:eee:appene:v:225:y:2018:i:c:p:922-933
    DOI: 10.1016/j.apenergy.2018.05.074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918307931
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.05.074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eicker, Ursula & Schneider, Dietrich & Schumacher, Jürgen & Ge, Tianshu & Dai, Yanjun, 2010. "Operational experiences with solar air collector driven desiccant cooling systems," Applied Energy, Elsevier, vol. 87(12), pages 3735-3747, December.
    2. Mei, Jun & Xia, Xiaohua, 2017. "Energy-efficient predictive control of indoor thermal comfort and air quality in a direct expansion air conditioning system," Applied Energy, Elsevier, vol. 195(C), pages 439-452.
    3. Villarino, José Ignacio & Villarino, Alberto & Fernández, Francisco Ángel, 2017. "Experimental and modelling analysis of an office building HVAC system based in a ground-coupled heat pump and radiant floor," Applied Energy, Elsevier, vol. 190(C), pages 1020-1028.
    4. Keniar, Khoudor & Ghali, Kamel & Ghaddar, Nesreen, 2015. "Study of solar regenerated membrane desiccant system to control humidity and decrease energy consumption in office spaces," Applied Energy, Elsevier, vol. 138(C), pages 121-132.
    5. Wang, Nan & Zhang, Jiangfeng & Xia, Xiaohua, 2013. "Desiccant wheel thermal performance modeling for indoor humidity optimal control," Applied Energy, Elsevier, vol. 112(C), pages 999-1005.
    6. Ge, T.S. & Dai, Y.J. & Li, Y. & Wang, R.Z., 2012. "Simulation investigation on solar powered desiccant coated heat exchanger cooling system," Applied Energy, Elsevier, vol. 93(C), pages 532-540.
    7. Li, Ning & Xia, Liang & Shiming, Deng & Xu, Xiangguo & Chan, Ming-Yin, 2012. "Dynamic modeling and control of a direct expansion air conditioning system using artificial neural network," Applied Energy, Elsevier, vol. 91(1), pages 290-300.
    8. Karunakaran, R. & Iniyan, S. & Goic, Ranko, 2010. "Energy efficient fuzzy based combined variable refrigerant volume and variable air volume air conditioning system for buildings," Applied Energy, Elsevier, vol. 87(4), pages 1158-1175, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Liu & Weng, Wenbing & Deng, Shiming, 2020. "A modeling study on a direct expansion based air conditioner having a two-sectioned cooling coil," Applied Energy, Elsevier, vol. 278(C).
    2. Flavio Muñoz & Ramon Garcia-Hernandez & Jose Ruelas & Juan E. Palomares-Ruiz & Carlos Álvarez-Macías, 2022. "Optimal Operation for Reduced Energy Consumption of an Air Conditioning System Using Neural Inverse Optimal Control," Mathematics, MDPI, vol. 10(5), pages 1-15, February.
    3. Yudong Xia & Shu Jiangzhou & Xuejun Zhang & Zhao Zhang, 2020. "Steady-State Performance Prediction for a Variable Speed Direct Expansion Air Conditioning System Using a White-Box Based Modeling Approach," Energies, MDPI, vol. 13(18), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chiang, Yuan-Ching & Chen, Chih-Hao & Chiang, Yi-Chin & Chen, Sih-Li, 2016. "Circulating inclined fluidized beds with application for desiccant dehumidification systems," Applied Energy, Elsevier, vol. 175(C), pages 199-211.
    2. Lim, Dae Kyu & Ahn, Byoung Ha & Jeong, Ji Hwan, 2018. "Method to control an air conditioner by directly measuring the relative humidity of indoor air to improve the comfort and energy efficiency," Applied Energy, Elsevier, vol. 215(C), pages 290-299.
    3. Yang, Zili & Zhang, Kaisheng & Hwang, Yunho & Lian, Zhiwei, 2016. "Performance investigation on the ultrasonic atomization liquid desiccant regeneration system," Applied Energy, Elsevier, vol. 171(C), pages 12-25.
    4. Yan, Huaxia & Xia, Yudong & Deng, Shiming, 2017. "Simulation study on a three-evaporator air conditioning system for simultaneous indoor air temperature and humidity control," Applied Energy, Elsevier, vol. 207(C), pages 294-304.
    5. Angrisani, Giovanni & Roselli, Carlo & Sasso, Maurizio, 2013. "Effect of rotational speed on the performances of a desiccant wheel," Applied Energy, Elsevier, vol. 104(C), pages 268-275.
    6. Prieto, Alejandro & Knaack, Ulrich & Klein, Tillmann & Auer, Thomas, 2017. "25 Years of cooling research in office buildings: Review for the integration of cooling strategies into the building façade (1990–2014)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 89-102.
    7. Rambhad, Kishor S. & Walke, Pramod V. & Tidke, D.J., 2016. "Solid desiccant dehumidification and regeneration methods—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 73-83.
    8. Xu, F. & Bian, Z.F. & Ge, T.S. & Dai, Y.J. & Wang, C.H. & Kawi, S., 2019. "Analysis on solar energy powered cooling system based on desiccant coated heat exchanger using metal-organic framework," Energy, Elsevier, vol. 177(C), pages 211-221.
    9. Raman, Naren Srivaths & Devaprasad, Karthikeya & Chen, Bo & Ingley, Herbert A. & Barooah, Prabir, 2020. "Model predictive control for energy-efficient HVAC operation with humidity and latent heat considerations," Applied Energy, Elsevier, vol. 279(C).
    10. Mei, Jun & Xia, Xiaohua, 2017. "Energy-efficient predictive control of indoor thermal comfort and air quality in a direct expansion air conditioning system," Applied Energy, Elsevier, vol. 195(C), pages 439-452.
    11. Mei, Jun & Xia, Xiaohua & Song, Mengjie, 2018. "An autonomous hierarchical control for improving indoor comfort and energy efficiency of a direct expansion air conditioning system," Applied Energy, Elsevier, vol. 221(C), pages 450-463.
    12. Guo, Jinyi & Lin, Simao & Bilbao, Jose I. & White, Stephen D. & Sproul, Alistair B., 2017. "A review of photovoltaic thermal (PV/T) heat utilisation with low temperature desiccant cooling and dehumidification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1-14.
    13. Angrisani, Giovanni & Roselli, Carlo & Sasso, Maurizio, 2015. "Experimental assessment of the energy performance of a hybrid desiccant cooling system and comparison with other air-conditioning technologies," Applied Energy, Elsevier, vol. 138(C), pages 533-545.
    14. Gao, D.C. & Sun, Y.J. & Ma, Z. & Ren, H., 2021. "A review on integration and design of desiccant air-conditioning systems for overall performance improvements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    15. Yan, Huaxia & Pan, Yan & Li, Zhao & Deng, Shiming, 2018. "Further development of a thermal comfort based fuzzy logic controller for a direct expansion air conditioning system," Applied Energy, Elsevier, vol. 219(C), pages 312-324.
    16. Ascione, Fabrizio & Bellia, Laura & Capozzoli, Alfonso, 2013. "A coupled numerical approach on museum air conditioning: Energy and fluid-dynamic analysis," Applied Energy, Elsevier, vol. 103(C), pages 416-427.
    17. Nutkiewicz, Alex & Yang, Zheng & Jain, Rishee K., 2018. "Data-driven Urban Energy Simulation (DUE-S): A framework for integrating engineering simulation and machine learning methods in a multi-scale urban energy modeling workflow," Applied Energy, Elsevier, vol. 225(C), pages 1176-1189.
    18. Shan, Kui & Wang, Shengwei, 2017. "Energy efficient design and control of cleanroom environment control systems in subtropical regions – A comparative analysis and on-site validation," Applied Energy, Elsevier, vol. 204(C), pages 582-595.
    19. Zhang, Ning & Yin, Shao-You & Li, Min, 2018. "Model-based optimization for a heat pump driven and hollow fiber membrane hybrid two-stage liquid desiccant air dehumidification system," Applied Energy, Elsevier, vol. 228(C), pages 12-20.
    20. Kayaci, Nurullah, 2020. "Energy and exergy analysis and thermo-economic optimization of the ground source heat pump integrated with radiant wall panel and fan-coil unit with floor heating or radiator," Renewable Energy, Elsevier, vol. 160(C), pages 333-349.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:225:y:2018:i:c:p:922-933. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.