IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i18p4757-d412538.html
   My bibliography  Save this article

Steady-State Performance Prediction for a Variable Speed Direct Expansion Air Conditioning System Using a White-Box Based Modeling Approach

Author

Listed:
  • Yudong Xia

    (Institute of Refrigeration and Cryogenics, Zhejiang University, Hangzhou 310058, China
    Institute of Energy Utilization and Automation, Hangzhou Dianzi University, Hangzhou 310018, China)

  • Shu Jiangzhou

    (Institute of Energy Utilization and Automation, Hangzhou Dianzi University, Hangzhou 310018, China)

  • Xuejun Zhang

    (Institute of Refrigeration and Cryogenics, Zhejiang University, Hangzhou 310058, China)

  • Zhao Zhang

    (Parker Hannifin Motion & Control (Shanghai) Co., Ltd., Shanghai 201206, China)

Abstract

When using a certain type of Heating, Ventilation & Air Conditioning (HVAC) systems, it is primary to obtain their steady-state operating behaviors for achieving a better indoor thermal environment. This paper reports a development of a white-box-based dynamic model for a direct expansion (DX) air conditioning (A/C) system to predict its steady-state operating performance under variable speed operation. The established model consists of five sub-models, i.e., a compressor, an electronic expansion valve, an evaporator, a condenser and a conditioned space. Each sub-model was developed based on partial lumped parameter approach. Using the available data generated from an experimental DX A/C system, both transient and steady-state behaviors predictions agreed well with the experimental ones. With the help of the validated white-box model, the inherent steady-state operating performance expressed in terms of the relationship among total cooling capacity (TCC), equipment sensible heat ratio (E SHR) and coefficient of performance (COP) under various speed combinations of compressor and supply fan were further examined. The results show that a higher COP could be achieved when the DX A/C system was operated at a higher fan speed or a lower compressor speed for dealing with a larger required E SHR. This model could be helpful for A/C system design and controller development.

Suggested Citation

  • Yudong Xia & Shu Jiangzhou & Xuejun Zhang & Zhao Zhang, 2020. "Steady-State Performance Prediction for a Variable Speed Direct Expansion Air Conditioning System Using a White-Box Based Modeling Approach," Energies, MDPI, vol. 13(18), pages 1-17, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4757-:d:412538
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/18/4757/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/18/4757/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jee-Heon Kim & Nam-Chul Seong & Wonchang Choi, 2019. "Modeling and Optimizing a Chiller System Using a Machine Learning Algorithm," Energies, MDPI, vol. 12(15), pages 1-13, July.
    2. Afram, Abdul & Janabi-Sharifi, Farrokh, 2015. "Gray-box modeling and validation of residential HVAC system for control system design," Applied Energy, Elsevier, vol. 137(C), pages 134-150.
    3. Chen, Wenjing & Chan, Ming-yin & Weng, Wenbing & Yan, Huaxia & Deng, Shiming, 2018. "An experimental study on the operational characteristics of a direct expansion based enhanced dehumidification air conditioning system," Applied Energy, Elsevier, vol. 225(C), pages 922-933.
    4. Mohammed Al-Azba & Zhaohui Cen & Yves Remond & Said Ahzi, 2020. "An Optimal Air-Conditioner On-Off Control Scheme under Extremely Hot Weather Conditions," Energies, MDPI, vol. 13(5), pages 1-21, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tongchana Thongtip & Natthawut Ruangtrakoon, 2021. "Real Air-Conditioning Performance of Ejector Refrigerator Based Air-Conditioner Powered by Low Temperature Heat Source," Energies, MDPI, vol. 14(3), pages 1-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Zhiwen & Deng, Qiao & Ren, Hao & Zhao, Zhengrun & Peng, Tao & Yang, Chunhua & Gui, Weihua, 2022. "A new energy consumption prediction method for chillers based on GraphSAGE by combining empirical knowledge and operating data," Applied Energy, Elsevier, vol. 310(C).
    2. Yassine Chemingui & Adel Gastli & Omar Ellabban, 2020. "Reinforcement Learning-Based School Energy Management System," Energies, MDPI, vol. 13(23), pages 1-21, December.
    3. Lork, Clement & Li, Wen-Tai & Qin, Yan & Zhou, Yuren & Yuen, Chau & Tushar, Wayes & Saha, Tapan K., 2020. "An uncertainty-aware deep reinforcement learning framework for residential air conditioning energy management," Applied Energy, Elsevier, vol. 276(C).
    4. Jaroslaw Krzywanski, 2019. "A General Approach in Optimization of Heat Exchangers by Bio-Inspired Artificial Intelligence Methods," Energies, MDPI, vol. 12(23), pages 1-32, November.
    5. Jee-Heon Kim & Nam-Chul Seong & Wonchang Choi, 2020. "Forecasting the Energy Consumption of an Actual Air Handling Unit and Absorption Chiller Using ANN Models," Energies, MDPI, vol. 13(17), pages 1-12, August.
    6. Vlad Mureșan & Mihaela-Ligia Ungureșan & Mihail Abrudean & Honoriu Vălean & Iulia Clitan & Roxana Motorga & Emilian Ceuca & Marius Fișcă, 2021. "AI versus Classic Methods in Modelling Isotopic Separation Processes: Efficiency Comparison," Mathematics, MDPI, vol. 9(23), pages 1-31, November.
    7. Homod, Raad Z. & Gaeid, Khalaf S. & Dawood, Suroor M. & Hatami, Alireza & Sahari, Khairul S., 2020. "Evaluation of energy-saving potential for optimal time response of HVAC control system in smart buildings," Applied Energy, Elsevier, vol. 271(C).
    8. Jee-Heon Kim & Nam-Chul Seong & Wonchang Choi, 2019. "Cooling Load Forecasting via Predictive Optimization of a Nonlinear Autoregressive Exogenous (NARX) Neural Network Model," Sustainability, MDPI, vol. 11(23), pages 1-13, November.
    9. Afroz, Zakia & Urmee, Tania & Shafiullah, G.M. & Higgins, Gary, 2018. "Real-time prediction model for indoor temperature in a commercial building," Applied Energy, Elsevier, vol. 231(C), pages 29-53.
    10. Xia, Lei & Ma, Zhenjun & Kokogiannakis, Georgios & Wang, Shugang & Gong, Xuemei, 2018. "A model-based optimal control strategy for ground source heat pump systems with integrated solar photovoltaic thermal collectors," Applied Energy, Elsevier, vol. 228(C), pages 1399-1412.
    11. Abhinandana Boodi & Karim Beddiar & Malek Benamour & Yassine Amirat & Mohamed Benbouzid, 2018. "Intelligent Systems for Building Energy and Occupant Comfort Optimization: A State of the Art Review and Recommendations," Energies, MDPI, vol. 11(10), pages 1-26, September.
    12. Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Yin, Xiaohong & Xian, Huacai, 2019. "Modeling, air balancing and optimal pressure set-point selection for the ventilation system with minimized energy consumption," Applied Energy, Elsevier, vol. 236(C), pages 574-589.
    13. Manuel R. Arahal & Manuel G. Ortega & Manuel G. Satué, 2021. "Chiller Load Forecasting Using Hyper-Gaussian Nets," Energies, MDPI, vol. 14(12), pages 1-15, June.
    14. O’Dwyer, Edward & Pan, Indranil & Acha, Salvador & Shah, Nilay, 2019. "Smart energy systems for sustainable smart cities: Current developments, trends and future directions," Applied Energy, Elsevier, vol. 237(C), pages 581-597.
    15. Fang, Xi & Gong, Guangcai & Li, Guannan & Chun, Liang & Peng, Pei & Li, Wenqiang & Shi, Xing, 2023. "Cross temporal-spatial transferability investigation of deep reinforcement learning control strategy in the building HVAC system level," Energy, Elsevier, vol. 263(PB).
    16. Sarran, Lucile & Smith, Kevin M. & Hviid, Christian A. & Rode, Carsten, 2022. "Grey-box modelling and virtual sensors enabling continuous commissioning of hydronic floor heating," Energy, Elsevier, vol. 261(PB).
    17. Junqi Wang & Rundong Liu & Linfeng Zhang & Hussain Syed ASAD & Erlin Meng, 2019. "Triggering Optimal Control of Air Conditioning Systems by Event-Driven Mechanism: Comparing Direct and Indirect Approaches," Energies, MDPI, vol. 12(20), pages 1-20, October.
    18. Fan, He & Zhang, Yu-fei & Su, Zhi-gang & Wang, Ben, 2017. "A dynamic mathematical model of an ultra-supercritical coal fired once-through boiler-turbine unit," Applied Energy, Elsevier, vol. 189(C), pages 654-666.
    19. Samy Faddel & Guanyu Tian & Qun Zhou, 2021. "Decentralized Management of Commercial HVAC Systems," Energies, MDPI, vol. 14(11), pages 1-18, May.
    20. Lankeshwara, Gayan & Sharma, Rahul & Yan, Ruifeng & Saha, Tapan K., 2022. "Control algorithms to mitigate the effect of uncertainties in residential demand management," Applied Energy, Elsevier, vol. 306(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4757-:d:412538. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.