IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i5p695-d756610.html
   My bibliography  Save this article

Optimal Operation for Reduced Energy Consumption of an Air Conditioning System Using Neural Inverse Optimal Control

Author

Listed:
  • Flavio Muñoz

    (Tecnologico Nacional de Mexico/ITS de Cajeme, Carretera Internacional a Nogales km 2, Cd. Obregon 85024, Sonora, Mexico)

  • Ramon Garcia-Hernandez

    (Tecnologico Nacional de Mexico/Instituto Tecnologico de La Laguna, Blvd. Revolucion y Av. Instituto Tecnologico de La Laguna S/N, Col. Centro, Torreon 27000, Coahuila, Mexico)

  • Jose Ruelas

    (Tecnologico Nacional de Mexico/ITS de Cajeme, Carretera Internacional a Nogales km 2, Cd. Obregon 85024, Sonora, Mexico)

  • Juan E. Palomares-Ruiz

    (Tecnologico Nacional de Mexico/ITS de Cajeme, Carretera Internacional a Nogales km 2, Cd. Obregon 85024, Sonora, Mexico)

  • Carlos Álvarez-Macías

    (Tecnologico Nacional de Mexico/Instituto Tecnologico de La Laguna, Blvd. Revolucion y Av. Instituto Tecnologico de La Laguna S/N, Col. Centro, Torreon 27000, Coahuila, Mexico)

Abstract

For a comfortable thermal environment, the main parameters are indoor air humidity and temperature. These parameters are strongly coupled, causing the need to search for multivariable control alternatives that allow efficient results. Therefore, in order to control both the indoor air humidity and temperature for direct expansion (DX) air conditioning (A/C) systems, different controllers have been designed. In this paper, a discrete-time neural inverse optimal control scheme for trajectories tracking and reduced energy consumption of a DX A/C system is presented. The dynamic model of the plant is approximated by a recurrent high-order neural network (RHONN) identifier. Using this model, a discrete-time neural inverse optimal controller is designed. Unscented Kalman filter (UKF) is used online for the neural network learning. Via simulation the scheme is tested. The proposed approach effectiveness is illustrated with the obtained results and the control proposal performance against disturbances is validated.

Suggested Citation

  • Flavio Muñoz & Ramon Garcia-Hernandez & Jose Ruelas & Juan E. Palomares-Ruiz & Carlos Álvarez-Macías, 2022. "Optimal Operation for Reduced Energy Consumption of an Air Conditioning System Using Neural Inverse Optimal Control," Mathematics, MDPI, vol. 10(5), pages 1-15, February.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:5:p:695-:d:756610
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/5/695/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/5/695/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alberto Garces-Jimenez & Jose-Manuel Gomez-Pulido & Nuria Gallego-Salvador & Alvaro-Jose Garcia-Tejedor, 2021. "Genetic and Swarm Algorithms for Optimizing the Control of Building HVAC Systems Using Real Data: A Comparative Study," Mathematics, MDPI, vol. 9(18), pages 1-24, September.
    2. Akinkunmi Adegbenro & Michael Short & Claudio Angione, 2021. "An Integrated Approach to Adaptive Control and Supervisory Optimisation of HVAC Control Systems for Demand Response Applications," Energies, MDPI, vol. 14(8), pages 1-18, April.
    3. Chen, Wenjing & Chan, Ming-yin & Weng, Wenbing & Yan, Huaxia & Deng, Shiming, 2018. "An experimental study on the operational characteristics of a direct expansion based enhanced dehumidification air conditioning system," Applied Energy, Elsevier, vol. 225(C), pages 922-933.
    4. Li, Ning & Xia, Liang & Shiming, Deng & Xu, Xiangguo & Chan, Ming-Yin, 2012. "Dynamic modeling and control of a direct expansion air conditioning system using artificial neural network," Applied Energy, Elsevier, vol. 91(1), pages 290-300.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alma Y. Alanis, 2022. "Bioinspired Intelligent Algorithms for Optimization, Modeling and Control: Theory and Applications," Mathematics, MDPI, vol. 10(13), pages 1-2, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anatolijs Borodinecs & Jurgis Zemitis & Arturs Palcikovskis, 2022. "HVAC System Control Solutions Based on Modern IT Technologies: A Review Article," Energies, MDPI, vol. 15(18), pages 1-22, September.
    2. Yan, Huaxia & Pan, Yan & Li, Zhao & Deng, Shiming, 2018. "Further development of a thermal comfort based fuzzy logic controller for a direct expansion air conditioning system," Applied Energy, Elsevier, vol. 219(C), pages 312-324.
    3. Ascione, Fabrizio & Bellia, Laura & Capozzoli, Alfonso, 2013. "A coupled numerical approach on museum air conditioning: Energy and fluid-dynamic analysis," Applied Energy, Elsevier, vol. 103(C), pages 416-427.
    4. Kang, Won Hee & Lee, Jong Man & Yeon, Sang Hun & Park, Min Kyeong & Kim, Chul Ho & Lee, Je Hyeon & Moon, Jin Woo & Lee, Kwang Ho, 2020. "Modeling, calibration, and sensitivity analysis of direct expansion AHU-Water source VRF system," Energy, Elsevier, vol. 199(C).
    5. Konrad Nering & Krzysztof Nering, 2021. "Validation of Modified Algebraic Model during Transitional Flow in HVAC Duct," Energies, MDPI, vol. 14(13), pages 1-20, July.
    6. Yan, Huaxia & Xia, Yudong & Deng, Shiming, 2017. "Simulation study on a three-evaporator air conditioning system for simultaneous indoor air temperature and humidity control," Applied Energy, Elsevier, vol. 207(C), pages 294-304.
    7. Qinghong Peng & Qungui Du, 2016. "Progress in Heat Pump Air Conditioning Systems for Electric Vehicles—A Review," Energies, MDPI, vol. 9(4), pages 1-17, March.
    8. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Zarei, Alireza & Noshadi, Iman, 2013. "Transesterification of waste cooking oil by heteropoly acid (HPA) catalyst: Optimization and kinetic model," Applied Energy, Elsevier, vol. 102(C), pages 283-292.
    9. Lim, Dae Kyu & Ahn, Byoung Ha & Jeong, Ji Hwan, 2018. "Method to control an air conditioner by directly measuring the relative humidity of indoor air to improve the comfort and energy efficiency," Applied Energy, Elsevier, vol. 215(C), pages 290-299.
    10. Miklos Kassai, 2019. "Energy Performance Investigation of a Direct Expansion Ventilation Cooling System with a Heat Wheel," Energies, MDPI, vol. 12(22), pages 1-16, November.
    11. Huang, Yanjun & Khajepour, Amir & Bagheri, Farshid & Bahrami, Majid, 2016. "Optimal energy-efficient predictive controllers in automotive air-conditioning/refrigeration systems," Applied Energy, Elsevier, vol. 184(C), pages 605-618.
    12. Chen, Wenjing & Chan, Ming-yin & Weng, Wenbing & Yan, Huaxia & Deng, Shiming, 2018. "An experimental study on the operational characteristics of a direct expansion based enhanced dehumidification air conditioning system," Applied Energy, Elsevier, vol. 225(C), pages 922-933.
    13. Ali Hamza & Muhammad Uneeb & Iftikhar Ahmad & Komal Saleem & Zunaib Ali, 2023. "Variable Structure-Based Control for Dynamic Temperature Setpoint Regulation in Hospital Extreme Healthcare Zones," Energies, MDPI, vol. 16(10), pages 1-27, May.
    14. Huang, Xianghui & Li, Kuining & Xie, Yi & Liu, Bin & Liu, Jiangyan & Liu, Zhaoming & Mou, Lunjie, 2022. "A novel multistage constant compressor speed control strategy of electric vehicle air conditioning system based on genetic algorithm," Energy, Elsevier, vol. 241(C).
    15. Mei, Jun & Xia, Xiaohua, 2017. "Energy-efficient predictive control of indoor thermal comfort and air quality in a direct expansion air conditioning system," Applied Energy, Elsevier, vol. 195(C), pages 439-452.
    16. Fan, Hongming & Shao, Shuangquan & Tian, Changqing, 2014. "Performance investigation on a multi-unit heat pump for simultaneous temperature and humidity control," Applied Energy, Elsevier, vol. 113(C), pages 883-890.
    17. Mei, Jun & Xia, Xiaohua & Song, Mengjie, 2018. "An autonomous hierarchical control for improving indoor comfort and energy efficiency of a direct expansion air conditioning system," Applied Energy, Elsevier, vol. 221(C), pages 450-463.
    18. Yang, Liu & Weng, Wenbing & Deng, Shiming, 2020. "A modeling study on a direct expansion based air conditioner having a two-sectioned cooling coil," Applied Energy, Elsevier, vol. 278(C).
    19. Yudong Xia & Shu Jiangzhou & Xuejun Zhang & Zhao Zhang, 2020. "Steady-State Performance Prediction for a Variable Speed Direct Expansion Air Conditioning System Using a White-Box Based Modeling Approach," Energies, MDPI, vol. 13(18), pages 1-17, September.
    20. Joanna Piotrowska-Woroniak & Tomasz Szul & Krzysztof Cieśliński & Jozef Krilek, 2022. "The Impact of Weather-Forecast-Based Regulation on Energy Savings for Heating in Multi-Family Buildings," Energies, MDPI, vol. 15(19), pages 1-30, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:5:p:695-:d:756610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.