IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v221y2018icp450-463.html
   My bibliography  Save this article

An autonomous hierarchical control for improving indoor comfort and energy efficiency of a direct expansion air conditioning system

Author

Listed:
  • Mei, Jun
  • Xia, Xiaohua
  • Song, Mengjie

Abstract

This paper presents an autonomous hierarchical control method for a direct expansion air conditioning system. The control objective is to maintain both thermal comfort and indoor air quality at required levels while reducing energy consumption and cost. This control method consists of two layers. The upper layer is an open loop controller that allows obtaining tradeoff steady states by optimizing the energy cost of the direct expansion air conditioning system and the value of predicted mean vote under the time-of-use price structure of electricity. On the other hand, the lower layer designs a model predictive controller, which is in charge of tracking the tradeoff steady states calculated by the upper layer. Control performance of the proposed control method is compared to a conventional control strategy. The results show that the proposed control strategy reduces the energy consumption and energy cost of the direct expansion air conditioning system by 31.38% and 33.85%, respectively, while maintaining both the thermal comfort and indoor air quality within acceptable ranges, which validate the proposed methodology in terms of both comfort and energy efficiency.

Suggested Citation

  • Mei, Jun & Xia, Xiaohua & Song, Mengjie, 2018. "An autonomous hierarchical control for improving indoor comfort and energy efficiency of a direct expansion air conditioning system," Applied Energy, Elsevier, vol. 221(C), pages 450-463.
  • Handle: RePEc:eee:appene:v:221:y:2018:i:c:p:450-463
    DOI: 10.1016/j.apenergy.2018.03.162
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918305105
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.03.162?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wanjiru, Evan M. & Zhang, Lijun & Xia, Xiaohua, 2016. "Model predictive control strategy of energy-water management in urban households," Applied Energy, Elsevier, vol. 179(C), pages 821-831.
    2. Djongyang, Noël & Tchinda, René & Njomo, Donatien, 2010. "Thermal comfort: A review paper," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2626-2640, December.
    3. Wanjiru, Evan M. & Sichilalu, Sam M. & Xia, Xiaohua, 2017. "Model predictive control of heat pump water heater-instantaneous shower powered with integrated renewable-grid energy systems," Applied Energy, Elsevier, vol. 204(C), pages 1333-1346.
    4. Kim, Jimin & Hong, Taehoon & Jeong, Jaemin & Lee, Myeonghwi & Lee, Minhyun & Jeong, Kwangbok & Koo, Choongwan & Jeong, Jaewook, 2017. "Establishment of an optimal occupant behavior considering the energy consumption and indoor environmental quality by region," Applied Energy, Elsevier, vol. 204(C), pages 1431-1443.
    5. Mei, Jun & Xia, Xiaohua, 2017. "Energy-efficient predictive control of indoor thermal comfort and air quality in a direct expansion air conditioning system," Applied Energy, Elsevier, vol. 195(C), pages 439-452.
    6. Wu, Zhou & Wang, Bo & Xia, Xiaohua, 2016. "Large-scale building energy efficiency retrofit: Concept, model and control," Energy, Elsevier, vol. 109(C), pages 456-465.
    7. Zhang, Sheng & Cheng, Yong & Fang, Zhaosong & Huan, Chao & Lin, Zhang, 2017. "Optimization of room air temperature in stratum-ventilated rooms for both thermal comfort and energy saving," Applied Energy, Elsevier, vol. 204(C), pages 420-431.
    8. Razmara, M. & Maasoumy, M. & Shahbakhti, M. & Robinett, R.D., 2015. "Optimal exergy control of building HVAC system," Applied Energy, Elsevier, vol. 156(C), pages 555-565.
    9. Li, Ning & Xia, Liang & Shiming, Deng & Xu, Xiangguo & Chan, Ming-Yin, 2012. "Dynamic modeling and control of a direct expansion air conditioning system using artificial neural network," Applied Energy, Elsevier, vol. 91(1), pages 290-300.
    10. Yan, Huaxia & Xia, Yudong & Deng, Shiming, 2017. "Simulation study on a three-evaporator air conditioning system for simultaneous indoor air temperature and humidity control," Applied Energy, Elsevier, vol. 207(C), pages 294-304.
    11. Fan, Yuling & Xia, Xiaohua, 2017. "A multi-objective optimization model for energy-efficiency building envelope retrofitting plan with rooftop PV system installation and maintenance," Applied Energy, Elsevier, vol. 189(C), pages 327-335.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Yuliang & Zhu, Shanying & Xu, Qimin & Yang, Bo & Guan, Xinping, 2023. "Hybrid modeling-based temperature and humidity adaptive control for a multi-zone HVAC system," Applied Energy, Elsevier, vol. 334(C).
    2. He, Deqiang & Teng, Xiaoliang & Chen, Yanjun & Liu, Bin & Wang, Heliang & Li, Xianwang & Ma, Rui, 2022. "Energy saving in metro ventilation system based on multi-factor analysis and air characteristics of piston vent," Applied Energy, Elsevier, vol. 307(C).
    3. Raman, Naren Srivaths & Devaprasad, Karthikeya & Chen, Bo & Ingley, Herbert A. & Barooah, Prabir, 2020. "Model predictive control for energy-efficient HVAC operation with humidity and latent heat considerations," Applied Energy, Elsevier, vol. 279(C).
    4. Shao, Junqiang & Huang, Zhiyuan & Chen, Yugui & Li, Depeng & Xu, Xiangguo, 2023. "A practical application-oriented model predictive control algorithm for direct expansion (DX) air-conditioning (A/C) systems that balances thermal comfort and energy consumption," Energy, Elsevier, vol. 269(C).
    5. Yang, Ting & Zhao, Liyuan & Li, Wei & Wu, Jianzhong & Zomaya, Albert Y., 2021. "Towards healthy and cost-effective indoor environment management in smart homes: A deep reinforcement learning approach," Applied Energy, Elsevier, vol. 300(C).
    6. Lin, Dong & Zhang, Lijun & Xia, Xiaohua, 2021. "Model predictive control of a Venlo-type greenhouse system considering electrical energy, water and carbon dioxide consumption," Applied Energy, Elsevier, vol. 298(C).
    7. Guangzeng You & Peng Sun & Yi Lei & Donghui Zhang & Haibo Li, 2024. "Optimal Planning of Urban Building-Type Integrated Energy Systems Considering Indoor Somatosensory Comfort and PV Consumption," Sustainability, MDPI, vol. 16(1), pages 1-20, January.
    8. Zhang, Sheng & Cheng, Yong & Oladokun, Majeed Olaide & Huan, Chao & Lin, Zhang, 2019. "Heat removal efficiency of stratum ventilation for air-side modulation," Applied Energy, Elsevier, vol. 238(C), pages 1237-1249.
    9. Liu, Minzhang & Zhu, Chunguang & Zhang, Huan & Zheng, Wandong & You, Shijun & Campana, Pietro Elia & Yan, Jinyue, 2019. "The environment and energy consumption of a subway tunnel by the influence of piston wind," Applied Energy, Elsevier, vol. 246(C), pages 11-23.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mei, Jun & Xia, Xiaohua, 2017. "Energy-efficient predictive control of indoor thermal comfort and air quality in a direct expansion air conditioning system," Applied Energy, Elsevier, vol. 195(C), pages 439-452.
    2. Lim, Dae Kyu & Ahn, Byoung Ha & Jeong, Ji Hwan, 2018. "Method to control an air conditioner by directly measuring the relative humidity of indoor air to improve the comfort and energy efficiency," Applied Energy, Elsevier, vol. 215(C), pages 290-299.
    3. Drgoňa, Ján & Picard, Damien & Kvasnica, Michal & Helsen, Lieve, 2018. "Approximate model predictive building control via machine learning," Applied Energy, Elsevier, vol. 218(C), pages 199-216.
    4. Amir Faraji & Maria Rashidi & Fatemeh Rezaei & Payam Rahnamayiezekavat, 2023. "A Meta-Synthesis Review of Occupant Comfort Assessment in Buildings (2002–2022)," Sustainability, MDPI, vol. 15(5), pages 1-36, February.
    5. Thrampoulidis, Emmanouil & Mavromatidis, Georgios & Lucchi, Aurelien & Orehounig, Kristina, 2021. "A machine learning-based surrogate model to approximate optimal building retrofit solutions," Applied Energy, Elsevier, vol. 281(C).
    6. Georgios D. Kontes & Georgios I. Giannakis & Víctor Sánchez & Pablo De Agustin-Camacho & Ander Romero-Amorrortu & Natalia Panagiotidou & Dimitrios V. Rovas & Simone Steiger & Christopher Mutschler & G, 2018. "Simulation-Based Evaluation and Optimization of Control Strategies in Buildings," Energies, MDPI, vol. 11(12), pages 1-23, December.
    7. Azar, Elie & Nikolopoulou, Christina & Papadopoulos, Sokratis, 2016. "Integrating and optimizing metrics of sustainable building performance using human-focused agent-based modeling," Applied Energy, Elsevier, vol. 183(C), pages 926-937.
    8. Haider Latif & Samira Rahnama & Alessandro Maccarini & Goran Hultmark & Peter V. Nielsen & Alireza Afshari, 2022. "Precision Ventilation in an Open-Plan Office: A New Application of Active Chilled Beam (ACB) with a JetCone Feature," Sustainability, MDPI, vol. 14(7), pages 1-17, April.
    9. Chong, Cheng Tung & Fan, Yee Van & Lee, Chew Tin & Klemeš, Jiří Jaromír, 2022. "Post COVID-19 ENERGY sustainability and carbon emissions neutrality," Energy, Elsevier, vol. 241(C).
    10. Ascione, Fabrizio & Bianco, Nicola & Mauro, Gerardo Maria & Napolitano, Davide Ferdinando, 2019. "Retrofit of villas on Mediterranean coastlines: Pareto optimization with a view to energy-efficiency and cost-effectiveness," Applied Energy, Elsevier, vol. 254(C).
    11. Zhang, Sheng & Lin, Zhang, 2020. "Standard effective temperature based adaptive-rational thermal comfort model," Applied Energy, Elsevier, vol. 264(C).
    12. Zheng, Donglin & Yu, Lijun & Wang, Lizhen, 2019. "A techno-economic-risk decision-making methodology for large-scale building energy efficiency retrofit using Monte Carlo simulation," Energy, Elsevier, vol. 189(C).
    13. Chen, Wenjing & Chan, Ming-yin & Weng, Wenbing & Yan, Huaxia & Deng, Shiming, 2018. "An experimental study on the operational characteristics of a direct expansion based enhanced dehumidification air conditioning system," Applied Energy, Elsevier, vol. 225(C), pages 922-933.
    14. Zhang, Sheng & Ai, Zhengtao & Lin, Zhang, 2021. "Novel demand-controlled optimization of constant-air-volume mechanical ventilation for indoor air quality, durability and energy saving," Applied Energy, Elsevier, vol. 293(C).
    15. Ma, Nan & Aviv, Dorit & Guo, Hongshan & Braham, William W., 2021. "Measuring the right factors: A review of variables and models for thermal comfort and indoor air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    16. Ünal, Berat Berkan & Onaygil, Sermin & Acuner, Ebru & Cin, Rabia, 2022. "Application of energy efficiency obligation scheme for electricity distribution companies in Turkey," Energy Policy, Elsevier, vol. 163(C).
    17. Burek, Jasmina & Nutter, Darin W., 2019. "A life cycle assessment-based multi-objective optimization of the purchased, solar, and wind energy for the grocery, perishables, and general merchandise multi-facility distribution center network," Applied Energy, Elsevier, vol. 235(C), pages 1427-1446.
    18. Schito, Eva & Conti, Paolo & Testi, Daniele, 2018. "Multi-objective optimization of microclimate in museums for concurrent reduction of energy needs, visitors’ discomfort and artwork preservation risks," Applied Energy, Elsevier, vol. 224(C), pages 147-159.
    19. Anna Życzyńska & Dariusz Majerek & Zbigniew Suchorab & Agnieszka Żelazna & Václav Kočí & Robert Černý, 2021. "Improving the Energy Performance of Public Buildings Equipped with Individual Gas Boilers Due to Thermal Retrofitting," Energies, MDPI, vol. 14(6), pages 1-19, March.
    20. Yan, Huaxia & Pan, Yan & Li, Zhao & Deng, Shiming, 2018. "Further development of a thermal comfort based fuzzy logic controller for a direct expansion air conditioning system," Applied Energy, Elsevier, vol. 219(C), pages 312-324.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:221:y:2018:i:c:p:450-463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.