IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v215y2018icp290-299.html
   My bibliography  Save this article

Method to control an air conditioner by directly measuring the relative humidity of indoor air to improve the comfort and energy efficiency

Author

Listed:
  • Lim, Dae Kyu
  • Ahn, Byoung Ha
  • Jeong, Ji Hwan

Abstract

In modern society, air conditioning systems are widely used in places where people tend to congregate, such as in homes, companies, schools and work sites. Both the dry-bulb temperature and relative humidity should be measured and controlled to achieve better comfort and to improve the energy efficiency of air conditioning systems. However, the current evaporation pressure control technique based on evaporator outlet pressure reading (EPCP) method only uses the dry-bulb temperature to control the evaporation pressure, making this method insufficient with regard to improving comfort. An evaporation pressure control approach based on the evaporator pressure and the relative humidity reading (EPCR) method is developed here. The EPCR method changes the evaporation pressure based on the dry-bulb temperature and the relative humidity of the air. The performance of an identical air conditioner is measured experimentally while switching the control method between the conventional EPCP method and the newly proposed EPCR method. The results demonstrate that the new EPCR method improves both the thermal comfort of indoor air and the energy efficiency.

Suggested Citation

  • Lim, Dae Kyu & Ahn, Byoung Ha & Jeong, Ji Hwan, 2018. "Method to control an air conditioner by directly measuring the relative humidity of indoor air to improve the comfort and energy efficiency," Applied Energy, Elsevier, vol. 215(C), pages 290-299.
  • Handle: RePEc:eee:appene:v:215:y:2018:i:c:p:290-299
    DOI: 10.1016/j.apenergy.2018.02.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918301235
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.02.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Shengwei & Tang, Rui, 2017. "Supply-based feedback control strategy of air-conditioning systems for direct load control of buildings responding to urgent requests of smart grids," Applied Energy, Elsevier, vol. 201(C), pages 419-432.
    2. Song, Mengjie & Deng, Shiming & Dang, Chaobin & Mao, Ning & Wang, Zhihua, 2018. "Review on improvement for air source heat pump units during frosting and defrosting," Applied Energy, Elsevier, vol. 211(C), pages 1150-1170.
    3. Wang, Weimin & Katipamula, Srinivas & Ngo, Hung & Underhill, Ronald & Taasevigen, Danny & Lutes, Robert, 2015. "Field evaluation of advanced controls for the retrofit of packaged air conditioners and heat pumps," Applied Energy, Elsevier, vol. 154(C), pages 344-351.
    4. Hu, Maomao & Xiao, Fu & Wang, Lingshi, 2017. "Investigation of demand response potentials of residential air conditioners in smart grids using grey-box room thermal model," Applied Energy, Elsevier, vol. 207(C), pages 324-335.
    5. Xu, Peng & Ma, Xiaoli & Zhao, Xudong & Fancey, Kevin, 2017. "Experimental investigation of a super performance dew point air cooler," Applied Energy, Elsevier, vol. 203(C), pages 761-777.
    6. Tassou, S.A. & Marquand, C.J. & Wilson, D.R., 1983. "Comparison of the performance of capacity controlled and conventional on/off controlled heat pumps," Applied Energy, Elsevier, vol. 14(4), pages 241-256.
    7. Mei, Jun & Xia, Xiaohua, 2017. "Energy-efficient predictive control of indoor thermal comfort and air quality in a direct expansion air conditioning system," Applied Energy, Elsevier, vol. 195(C), pages 439-452.
    8. Jradi, M. & Riffat, S., 2014. "Experimental and numerical investigation of a dew-point cooling system for thermal comfort in buildings," Applied Energy, Elsevier, vol. 132(C), pages 524-535.
    9. Keniar, Khoudor & Ghali, Kamel & Ghaddar, Nesreen, 2015. "Study of solar regenerated membrane desiccant system to control humidity and decrease energy consumption in office spaces," Applied Energy, Elsevier, vol. 138(C), pages 121-132.
    10. Park, Young Sung & Jeong, Ji Hwan & Ahn, Byoung Ha, 2014. "Heat pump control method based on direct measurement of evaporation pressure to improve energy efficiency and indoor air temperature stability at a low cooling load condition," Applied Energy, Elsevier, vol. 132(C), pages 99-107.
    11. Waheed, M.A. & Oni, A.O. & Adejuyigbe, S.B. & Adewumi, B.A. & Fadare, D.A., 2014. "Performance enhancement of vapor recompression heat pump," Applied Energy, Elsevier, vol. 114(C), pages 69-79.
    12. Li, Ning & Xia, Liang & Shiming, Deng & Xu, Xiangguo & Chan, Ming-Yin, 2012. "Dynamic modeling and control of a direct expansion air conditioning system using artificial neural network," Applied Energy, Elsevier, vol. 91(1), pages 290-300.
    13. Yan, Huaxia & Xia, Yudong & Deng, Shiming, 2017. "Simulation study on a three-evaporator air conditioning system for simultaneous indoor air temperature and humidity control," Applied Energy, Elsevier, vol. 207(C), pages 294-304.
    14. O’Connor, Dominic & Calautit, John Kaiser & Hughes, Ben Richard, 2016. "A novel design of a desiccant rotary wheel for passive ventilation applications," Applied Energy, Elsevier, vol. 179(C), pages 99-109.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Angel Andrade & Juan Zapata-Mina & Alvaro Restrepo, 2023. "Assessment of the Correlation between Energy Rating Labeling Regulations and Performance Metrics for Residential Air Conditioning Units: Case Study Variable Type Air Conditioners," International Journal of Energy Economics and Policy, Econjournals, vol. 13(5), pages 432-441, September.
    2. Sim, Jaehoon & Lee, Hyoin & Jeong, Ji Hwan, 2021. "Optimal design of variable-path heat exchanger for energy efficiency improvement of air-source heat pump system," Applied Energy, Elsevier, vol. 290(C).
    3. Bai, Hongyu & Zhu, Jie & Chen, Xiangjie & Chu, Junze & Cui, Yuanlong & Yan, Yuying, 2020. "Steady-state performance evaluation and energy assessment of a complete membrane-based liquid desiccant dehumidification system," Applied Energy, Elsevier, vol. 258(C).
    4. Kong, Xiangfei & Xi, Chang & Li, Han & Lin, Zhang, 2020. "Multi-parameter performance optimization for whole year operation of stratum ventilation in offices," Applied Energy, Elsevier, vol. 268(C).
    5. Gulfam, Raza & Zhang, Peng & Meng, Zhaonan, 2019. "Advanced thermal systems driven by paraffin-based phase change materials – A review," Applied Energy, Elsevier, vol. 238(C), pages 582-611.
    6. Li, Han & Fu, Zheng & Xi, Chang & Li, Nana & Li, Wei & Kong, Xiangfei, 2022. "Study on the impact of parallel jet spacing on the performance of multi-jet stratum ventilation," Applied Energy, Elsevier, vol. 306(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Wenjing & Chan, Ming-yin & Weng, Wenbing & Yan, Huaxia & Deng, Shiming, 2018. "An experimental study on the operational characteristics of a direct expansion based enhanced dehumidification air conditioning system," Applied Energy, Elsevier, vol. 225(C), pages 922-933.
    2. Mei, Jun & Xia, Xiaohua & Song, Mengjie, 2018. "An autonomous hierarchical control for improving indoor comfort and energy efficiency of a direct expansion air conditioning system," Applied Energy, Elsevier, vol. 221(C), pages 450-463.
    3. Dhumane, Rohit & Ling, Jiazhen & Aute, Vikrant & Radermacher, Reinhard, 2017. "Portable personal conditioning systems: Transient modeling and system analysis," Applied Energy, Elsevier, vol. 208(C), pages 390-401.
    4. Xiao, Xin & Liu, Jinjin, 2024. "A state-of-art review of dew point evaporative cooling technology and integrated applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    5. Jianwu Xiong & Linlin Chen & Yin Zhang, 2023. "Building Energy Saving for Indoor Cooling and Heating: Mechanism and Comparison on Temperature Difference," Sustainability, MDPI, vol. 15(14), pages 1-20, July.
    6. Rama Curiel, José Adrián & Thakur, Jagruti, 2022. "A novel approach for Direct Load Control of residential air conditioners for Demand Side Management in developing regions," Energy, Elsevier, vol. 258(C).
    7. Rasikh Tariq & Changhong Zhan & Nadeem Ahmed Sheikh & Xudong Zhao, 2018. "Thermal Performance Enhancement of a Cross-Flow-Type Maisotsenko Heat and Mass Exchanger Using Various Nanofluids," Energies, MDPI, vol. 11(10), pages 1-19, October.
    8. Sim, Jaehoon & Lee, Hyoin & Jeong, Ji Hwan, 2021. "Optimal design of variable-path heat exchanger for energy efficiency improvement of air-source heat pump system," Applied Energy, Elsevier, vol. 290(C).
    9. Yang, Hongxing & Shi, Wenchao & Chen, Yi & Min, Yunran, 2021. "Research development of indirect evaporative cooling technology: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    10. Zhu, Guangya & Wen, Tao & Wang, Qunwei & Xu, Xiaoyu, 2022. "A review of dew-point evaporative cooling: Recent advances and future development," Applied Energy, Elsevier, vol. 312(C).
    11. Ma, Xiaoli & Zhao, Xudong & Zhang, Yufeng & Liu, Kaixin & Yang, Hui & Li, Jing & Akhlaghi, Yousef Golizadeh & Liu, Haowen & Han, Zhonghe & Liu, Zhijian, 2022. "Combined Rankine Cycle and dew point cooler for energy efficient power generation of the power plants - A review and perspective study," Energy, Elsevier, vol. 238(PA).
    12. Tariq, Rasikh & Sheikh, Nadeem Ahmed & Livas-García, A. & Xamán, J. & Bassam, A. & Maisotsenko, Valeriy, 2021. "Projecting global water footprints diminution of a dew-point cooling system: Sustainability approach assisted with energetic and economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    13. Chua, K.J. & Chou, S.K. & Islam, M.R., 2018. "On the experimental study of a hybrid dehumidifier comprising membrane and composite desiccants," Applied Energy, Elsevier, vol. 220(C), pages 934-943.
    14. Ma, Xiaoli & Zeng, Cheng & Zhu, Zishang & Zhao, Xudong & Xiao, Xin & Akhlaghi, Yousef Golizadeh & Shittu, Samson, 2023. "Real life test of a novel super performance dew point cooling system in operational live data centre," Applied Energy, Elsevier, vol. 348(C).
    15. Chen, Yi & Yan, Huaxia & Yang, Hongxing, 2018. "Comparative study of on-off control and novel high-low control of regenerative indirect evaporative cooler (RIEC)," Applied Energy, Elsevier, vol. 225(C), pages 233-243.
    16. Golizadeh Akhlaghi, Yousef & Aslansefat, Koorosh & Zhao, Xudong & Sadati, Saba & Badiei, Ali & Xiao, Xin & Shittu, Samson & Fan, Yi & Ma, Xiaoli, 2021. "Hourly performance forecast of a dew point cooler using explainable Artificial Intelligence and evolutionary optimisations by 2050," Applied Energy, Elsevier, vol. 281(C).
    17. Lin, Jie & Bui, Duc Thuan & Wang, Ruzhu & Chua, Kian Jon, 2018. "On the fundamental heat and mass transfer analysis of the counter-flow dew point evaporative cooler," Applied Energy, Elsevier, vol. 217(C), pages 126-142.
    18. Tariq, Rasikh & Sheikh, Nadeem Ahmed & Xamán, J. & Bassam, A., 2018. "An innovative air saturator for humidification-dehumidification desalination application," Applied Energy, Elsevier, vol. 228(C), pages 789-807.
    19. Zanchini, Enzo & Naldi, Claudia, 2019. "Energy saving obtainable by applying a commercially available M-cycle evaporative cooling system to the air conditioning of an office building in North Italy," Energy, Elsevier, vol. 179(C), pages 975-988.
    20. Zhang, Sheng & Ai, Zhengtao & Lin, Zhang, 2021. "Novel demand-controlled optimization of constant-air-volume mechanical ventilation for indoor air quality, durability and energy saving," Applied Energy, Elsevier, vol. 293(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:215:y:2018:i:c:p:290-299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.