IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i8p2081-d348541.html
   My bibliography  Save this article

Co-Gasification of Treated Solid Recovered Fuel Residue by Using Minerals Bed and Biomass Waste Blends

Author

Listed:
  • Md Tanvir Alam

    (Department of Environmental Engineering, Yonsei University, Wonju, Gangwon-do 26493, Korea
    Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia)

  • Se-Won Park

    (Department of Environmental Engineering, Yonsei University, Wonju, Gangwon-do 26493, Korea)

  • Sang-Yeop Lee

    (Department of Environmental Engineering, Yonsei University, Wonju, Gangwon-do 26493, Korea)

  • Yean-Ouk Jeong

    (Department of Environmental Engineering, Yonsei University, Wonju, Gangwon-do 26493, Korea)

  • Anthony De Girolamo

    (Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia)

  • Yong-Chil Seo

    (Department of Environmental Engineering, Yonsei University, Wonju, Gangwon-do 26493, Korea)

  • Hang Seok Choi

    (Department of Environmental Engineering, Yonsei University, Wonju, Gangwon-do 26493, Korea)

Abstract

Solid recovered fuel (SRF) residue, which is leftovers from the SRF manufacturing process, usually is discarded in landfill because of its low heating value and high ash and moisture content. However, it could be used as a fuel after mechanical and biological treatment. Gasification experiments were conducted on treated SRF residue (TSRFR) to assess the viability of syngas production. Efforts were also made to improve the gasification performance by adding low-cost natural minerals such as dolomite and lime as bed material, and by blending with biomass waste. In the case of additive mineral tests, dolomite showed better performance compared to lime, and in the case of biomass blends, a 25 wt% pine sawdust blend with TSRFR showed the best performance. Finally, as an appropriate condition, a combined experiment was conducted at an equivalence ratio (ER) of 0.2 using a 25 wt% pine sawdust blend with TSRFR as a feedstock and dolomite as the bed material. The highest dry gas yield (1.81 Nm 3 /kg), with the highest amount of syngas (56.72 vol%) and highest lower heating value (9.55 MJ/Nm 3 ) was obtained in this condition. Furthermore, the highest cold gas efficiency (48.64%) and carbon conversion rate (98.87%), and the lowest residue yield (11.56%), tar (0.95 g/Nm 3 ), and gas pollutants content was observed.

Suggested Citation

  • Md Tanvir Alam & Se-Won Park & Sang-Yeop Lee & Yean-Ouk Jeong & Anthony De Girolamo & Yong-Chil Seo & Hang Seok Choi, 2020. "Co-Gasification of Treated Solid Recovered Fuel Residue by Using Minerals Bed and Biomass Waste Blends," Energies, MDPI, vol. 13(8), pages 1-16, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:2081-:d:348541
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/8/2081/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/8/2081/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kathirvale, Sivapalan & Muhd Yunus, Muhd Noor & Sopian, Kamaruzzaman & Samsuddin, Abdul Halim, 2004. "Energy potential from municipal solid waste in Malaysia," Renewable Energy, Elsevier, vol. 29(4), pages 559-567.
    2. Aime Hilaire Tchapda & Sarma V. Pisupati, 2014. "A Review of Thermal Co-Conversion of Coal and Biomass/Waste," Energies, MDPI, vol. 7(3), pages 1-51, February.
    3. Devi, Lopamudra & Ptasinski, Krzysztof J. & Janssen, Frans J.J.G. & van Paasen, Sander V.B. & Bergman, Patrick C.A. & Kiel, Jacob H.A., 2005. "Catalytic decomposition of biomass tars: use of dolomite and untreated olivine," Renewable Energy, Elsevier, vol. 30(4), pages 565-587.
    4. Asif, M. & Muneer, T., 2007. "Energy supply, its demand and security issues for developed and emerging economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(7), pages 1388-1413, September.
    5. Prins, Mark J. & Ptasinski, Krzysztof J. & Janssen, Frans J.J.G., 2007. "From coal to biomass gasification: Comparison of thermodynamic efficiency," Energy, Elsevier, vol. 32(7), pages 1248-1259.
    6. Md Tanvir Alam & Jang-Soo Lee & Sang-Yeop Lee & Dhruba Bhatta & Kunio Yoshikawa & Yong-Chil Seo, 2019. "Low Chlorine Fuel Pellets Production from the Mixture of Hydrothermally Treated Hospital Solid Waste, Pyrolytic Plastic Waste Residue and Biomass," Energies, MDPI, vol. 12(22), pages 1-17, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Shahabuddin & Tanvir Alam, 2022. "Gasification of Solid Fuels (Coal, Biomass and MSW): Overview, Challenges and Mitigation Strategies," Energies, MDPI, vol. 15(12), pages 1-20, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    2. Mazzoni, Luca & Janajreh, Isam & Elagroudy, Sherien & Ghenai, Chaouki, 2020. "Modeling of plasma and entrained flow co-gasification of MSW and petroleum sludge," Energy, Elsevier, vol. 196(C).
    3. Silva, Isabelly P. & Lima, Rafael M.A. & Silva, Gabriel F. & Ruzene, Denise S. & Silva, Daniel P., 2019. "Thermodynamic equilibrium model based on stoichiometric method for biomass gasification: A review of model modifications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    4. Svetlana Vladislavlevna Lobova & Aleksei Valentinovich Bogoviz & Yulia Vyacheslavovna Ragulina & Alexander Nikolaevich Alekseev, 2019. "The Fuel and Energy Complex of Russia: Analyzing Energy Efficiency Policies at the Federal Level," International Journal of Energy Economics and Policy, Econjournals, vol. 9(1), pages 205-211.
    5. Mauerhofer, A.M. & Schmid, J.C. & Benedikt, F. & Fuchs, J. & Müller, S. & Hofbauer, H., 2019. "Dual fluidized bed steam gasification: Change of product gas quality along the reactor height," Energy, Elsevier, vol. 173(C), pages 1256-1272.
    6. Kotowicz, Janusz & Sobolewski, Aleksander & Iluk, Tomasz, 2013. "Energetic analysis of a system integrated with biomass gasification," Energy, Elsevier, vol. 52(C), pages 265-278.
    7. Taran Loper & Victoria L. Crittenden, 2017. "Energy Security: Shaping The Consumer Decision Making Process In Emerging Economies," Organizations and Markets in Emerging Economies, Faculty of Economics, Vilnius University, vol. 8(1).
    8. Ahmed, A.M.A & Salmiaton, A. & Choong, T.S.Y & Wan Azlina, W.A.K.G., 2015. "Review of kinetic and equilibrium concepts for biomass tar modeling by using Aspen Plus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1623-1644.
    9. Hong, Yanran & Cao, Shijiao & Xu, Pengfei & Pan, Zhigang, 2024. "Interpreting the effect of global economic risks on crude oil market: A supply-demand perspective," International Review of Financial Analysis, Elsevier, vol. 91(C).
    10. Abolhosseini, Shahrouz & Heshmati, Almas & Altmann, Jörn, 2014. "A Review of Renewable Energy Supply and Energy Efficiency Technologies," IZA Discussion Papers 8145, Institute of Labor Economics (IZA).
    11. Fatoumata Jarjusey & Norshamliza Chamhuri, 2017. "Consumers' Awareness and Knowledge about Food Waste in Selangor,Malaysia," International Journal of Business and Economic Affairs (IJBEA), Sana N. Maswadeh, vol. 2(2), pages 91-97.
    12. Gassner, Martin & Maréchal, François, 2009. "Thermodynamic comparison of the FICFB and Viking gasification concepts," Energy, Elsevier, vol. 34(10), pages 1744-1753.
    13. Balcombe, Paul & Speirs, Jamie & Johnson, Erin & Martin, Jeanne & Brandon, Nigel & Hawkes, Adam, 2018. "The carbon credentials of hydrogen gas networks and supply chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1077-1088.
    14. Yuan, Mei-Hua & Lo, Shang-Lien, 2020. "Developing indicators for the monitoring of the sustainability of food, energy, and water," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    15. Aleksei Valentinovich Bogoviz & Svetlana Vladislavlevna Lobova & Yulia Vyacheslavovna Ragulina & Alexander Nikolaevich Alekseev, 2018. "Russia s Energy Security Doctrine: Addressing Emerging Challenges and Opportunities," International Journal of Energy Economics and Policy, Econjournals, vol. 8(5), pages 1-6.
    16. Loha, Chanchal & Chattopadhyay, Himadri & Chatterjee, Pradip K., 2011. "Thermodynamic analysis of hydrogen rich synthetic gas generation from fluidized bed gasification of rice husk," Energy, Elsevier, vol. 36(7), pages 4063-4071.
    17. Berrueco, C. & Montané, D. & Matas Güell, B. & del Alamo, G., 2014. "Effect of temperature and dolomite on tar formation during gasification of torrefied biomass in a pressurized fluidized bed," Energy, Elsevier, vol. 66(C), pages 849-859.
    18. Huang, Beijia & Zhang, Long & Ma, Linmao & Bai, Wuliyasu & Ren, Jingzheng, 2021. "Multi-criteria decision analysis of China’s energy security from 2008 to 2017 based on Fuzzy BWM-DEA-AR model and Malmquist Productivity Index," Energy, Elsevier, vol. 228(C).
    19. Masnadi, Mohammad S. & Grace, John R. & Bi, Xiaotao T. & Lim, C. Jim & Ellis, Naoko & Li, Yong Hua & Watkinson, A. Paul, 2015. "From coal towards renewables: Catalytic/synergistic effects during steam co-gasification of switchgrass and coal in a pilot-scale bubbling fluidized bed," Renewable Energy, Elsevier, vol. 83(C), pages 918-930.
    20. Alrubaih, M.S. & Zain, M.F.M. & Alghoul, M.A. & Ibrahim, N.L.N. & Shameri, M.A. & Elayeb, Omkalthum, 2013. "Research and development on aspects of daylighting fundamentals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 494-505.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:2081-:d:348541. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.