Bio-fuels generation and the heat conversion mechanisms in different microwave pyrolysis modes of sludge
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2020.114855
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Muley, P.D. & Henkel, C.E. & Aguilar, G. & Klasson, K.T. & Boldor, D., 2016. "Ex situ thermo-catalytic upgrading of biomass pyrolysis vapors using a traveling wave microwave reactor," Applied Energy, Elsevier, vol. 183(C), pages 995-1004.
- Ahmed, I. & Gupta, A.K., 2009. "Syngas yield during pyrolysis and steam gasification of paper," Applied Energy, Elsevier, vol. 86(9), pages 1813-1821, September.
- Gil-Lalaguna, N. & Sánchez, J.L. & Murillo, M.B. & Atienza-Martínez, M. & Gea, G., 2014. "Energetic assessment of air-steam gasification of sewage sludge and of the integration of sewage sludge pyrolysis and air-steam gasification of char," Energy, Elsevier, vol. 76(C), pages 652-662.
- Yang, Zixu & Lei, Hanwu & Zhang, Yayun & Qian, Kezhen & Villota, Elmar & Qian, Moriko & Yadavalli, Gayatri & Sun, Hua, 2018. "Production of renewable alkyl-phenols from catalytic pyrolysis of Douglas fir sawdust over biomass-derived activated carbons," Applied Energy, Elsevier, vol. 220(C), pages 426-436.
- Klinger, Jordan L. & Westover, Tyler L. & Emerson, Rachel M. & Williams, C. Luke & Hernandez, Sergio & Monson, Glen D. & Ryan, J. Chadron, 2018. "Effect of biomass type, heating rate, and sample size on microwave-enhanced fast pyrolysis product yields and qualities," Applied Energy, Elsevier, vol. 228(C), pages 535-545.
- Sun, Jing & Wang, Wenlong & Yue, Qinyan & Ma, Chunyuan & Zhang, Junsong & Zhao, Xiqiang & Song, Zhanlong, 2016. "Review on microwave–metal discharges and their applications in energy and industrial processes," Applied Energy, Elsevier, vol. 175(C), pages 141-157.
- Li, Jinhu & Li, Zenghua & Yang, Yongliang & Duan, Yujian & Xu, Jun & Gao, Ruiting, 2019. "Examination of CO, CO2 and active sites formation during isothermal pyrolysis of coal at low temperatures," Energy, Elsevier, vol. 185(C), pages 28-38.
- Lehto, Jani & Oasmaa, Anja & Solantausta, Yrjö & Kytö, Matti & Chiaramonti, David, 2014. "Review of fuel oil quality and combustion of fast pyrolysis bio-oils from lignocellulosic biomass," Applied Energy, Elsevier, vol. 116(C), pages 178-190.
- Cheng, Shuo & Wang, Yuhua & Fumitake, Takahashi & Kouji, Tokimatsu & Li, Aimin & Kunio, Yoshikawa, 2017. "Effect of steam and oil sludge ash additive on the products of oil sludge pyrolysis," Applied Energy, Elsevier, vol. 185(P1), pages 146-157.
- Lam, Su Shiung & Wan Mahari, Wan Adibah & Cheng, Chin Kui & Omar, Rozita & Chong, Cheng Tung & Chase, Howard A., 2016. "Recovery of diesel-like fuel from waste palm oil by pyrolysis using a microwave heated bed of activated carbon," Energy, Elsevier, vol. 115(P1), pages 791-799.
- Wu, Chunfei & Budarin, Vitaliy L. & Wang, Meihong & Sharifi, Vida & Gronnow, Mark J. & Wu, Yajue & Swithenbank, Jim & Clark, James H. & Williams, Paul T., 2015. "CO2 gasification of bio-char derived from conventional and microwave pyrolysis," Applied Energy, Elsevier, vol. 157(C), pages 533-539.
- Nipattummakul, Nimit & Ahmed, Islam & Kerdsuwan, Somrat & Gupta, Ashwani K., 2010. "High temperature steam gasification of wastewater sludge," Applied Energy, Elsevier, vol. 87(12), pages 3729-3734, December.
- Wang, Xiaoquan & Morrison, William & Du, Zhenyi & Wan, Yiqin & Lin, Xiangyang & Chen, Paul & Ruan, Roger, 2012. "Biomass temperature profile development and its implications under the microwave-assisted pyrolysis condition," Applied Energy, Elsevier, vol. 99(C), pages 386-392.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Luo, Juan & Sun, Shichang & Chen, Xing & Lin, Junhao & Ma, Rui & Zhang, Rui & Fang, Lin, 2021. "In-depth exploration of the energy utilization and pyrolysis mechanism of advanced continuous microwave pyrolysis," Applied Energy, Elsevier, vol. 292(C).
- Liu, Yali & Zhai, Yunbo & Li, Shanhong & Liu, Xiangmin & Liu, Xiaoping & Wang, Bei & Qiu, Zhenzi & Li, Caiting, 2020. "Production of bio-oil with low oxygen and nitrogen contents by combined hydrothermal pretreatment and pyrolysis of sewage sludge," Energy, Elsevier, vol. 203(C).
- Hu, Yaping & Lin, Junhao & Liao, Qinxiong & Sun, Shichang & Ma, Rui & Fang, Lin & Liu, Xiangli, 2021. "CO2-assisted catalytic municipal sludge for carbonaceous biofuel via sub- and supercritical water gasification," Energy, Elsevier, vol. 233(C).
- Zhang, Lianjie & Tan, Yongdong & Cai, Dongqiang & Sun, Jifu & Zhang, Yue & Li, Longzhi & Zhang, Qiang & Zou, Guifu & Song, Zhanlong & Bai, Yonghui, 2022. "Enhanced pyrolysis of woody biomass under interaction of microwave and needle-shape metal and its production properties," Energy, Elsevier, vol. 249(C).
- Liu, Huidong & Xu, Guoren & Li, Guibai, 2021. "Autocatalytic sludge pyrolysis by biochar derived from pharmaceutical sludge for biogas upgrading," Energy, Elsevier, vol. 229(C).
- Yang, Yadong & Shahbeik, Hossein & Shafizadeh, Alireza & Masoudnia, Nima & Rafiee, Shahin & Zhang, Yijia & Pan, Junting & Tabatabaei, Meisam & Aghbashlo, Mortaza, 2022. "Biomass microwave pyrolysis characterization by machine learning for sustainable rural biorefineries," Renewable Energy, Elsevier, vol. 201(P2), pages 70-86.
- Foong, Shin Ying & Liew, Rock Keey & Yek, Peter Nai Yuh & Han, Chai Sean & Phang, Xue Yee & Chen, Xiangmeng & Chong, William Woei Fong & Verma, Meenakshi & Lam, Su Shiung, 2023. "Microwave heating combined with activated carbon reaction bed: An energy-saving approach to convert seawater into freshwater," Energy, Elsevier, vol. 272(C).
- Sun, Jiaman & Luo, Juan & Lin, Junhao & Ma, Rui & Sun, Shichang & Fang, Lin & Li, Haowen, 2022. "Study of co-pyrolysis endpoint and product conversion of plastic and biomass using microwave thermogravimetric technology," Energy, Elsevier, vol. 247(C).
- Luo, Juan & Ma, Rui & Lin, Junhao & Sun, Shichang & Gong, Guojin & Sun, Jiaman & Chen, Yi & Ma, Ning, 2023. "Review of microwave pyrolysis of sludge to produce high quality biogas: Multi-perspectives process optimization and critical issues proposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Luo, Juan & Sun, Shichang & Chen, Xing & Lin, Junhao & Ma, Rui & Zhang, Rui & Fang, Lin, 2021. "In-depth exploration of the energy utilization and pyrolysis mechanism of advanced continuous microwave pyrolysis," Applied Energy, Elsevier, vol. 292(C).
- Syed-Hassan, Syed Shatir A. & Wang, Yi & Hu, Song & Su, Sheng & Xiang, Jun, 2017. "Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges and considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 888-913.
- Lam, Su Shiung & Wan Mahari, Wan Adibah & Ok, Yong Sik & Peng, Wanxi & Chong, Cheng Tung & Ma, Nyuk Ling & Chase, Howard A. & Liew, Zhenling & Yusup, Suzana & Kwon, Eilhann E. & Tsang, Daniel C.W., 2019. "Microwave vacuum pyrolysis of waste plastic and used cooking oil for simultaneous waste reduction and sustainable energy conversion: Recovery of cleaner liquid fuel and techno-economic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
- Klinger, Jordan L. & Westover, Tyler L. & Emerson, Rachel M. & Williams, C. Luke & Hernandez, Sergio & Monson, Glen D. & Ryan, J. Chadron, 2018. "Effect of biomass type, heating rate, and sample size on microwave-enhanced fast pyrolysis product yields and qualities," Applied Energy, Elsevier, vol. 228(C), pages 535-545.
- Huang, Yu-Fong & Shih, Chun-Hao & Chiueh, Pei-Te & Lo, Shang-Lien, 2015. "Microwave co-pyrolysis of sewage sludge and rice straw," Energy, Elsevier, vol. 87(C), pages 638-644.
- Ahmed, I.I. & Gupta, A.K., 2013. "Experiments and stochastic simulations of lignite coal during pyrolysis and gasification," Applied Energy, Elsevier, vol. 102(C), pages 355-363.
- Yang, Xiaoxia & Gu, Shengshen & Kheradmand, Amanj & Kan, Tao & He, Jing & Strezov, Vladimir & Zou, Ruiping & Yu, Aibing & Jiang, Yijiao, 2022. "Tunable syngas production from biomass: Synergistic effect of steam, Ni–CaO catalyst, and biochar," Energy, Elsevier, vol. 254(PB).
- Ma, Wenchao & Liu, Bin & Zhang, Ruixue & Gu, Tianbao & Ji, Xiang & Zhong, Lei & Chen, Guanyi & Ma, Longlong & Cheng, Zhanjun & Li, Xiangping, 2018. "Co-upgrading of raw bio-oil with kitchen waste oil through fluid catalytic cracking (FCC)," Applied Energy, Elsevier, vol. 217(C), pages 233-240.
- Kan, Tao & Strezov, Vladimir & Evans, Tim & He, Jing & Kumar, Ravinder & Lu, Qiang, 2020. "Catalytic pyrolysis of lignocellulosic biomass: A review of variations in process factors and system structure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
- Zhang, Yayun & Duan, Dengle & Lei, Hanwu & Villota, Elmar & Ruan, Roger, 2019. "Jet fuel production from waste plastics via catalytic pyrolysis with activated carbons," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Ahmed, I.I. & Gupta, A.K., 2012. "Sugarcane bagasse gasification: Global reaction mechanism of syngas evolution," Applied Energy, Elsevier, vol. 91(1), pages 75-81.
- Ahmed, I. & Jangsawang, W. & Gupta, A.K., 2012. "Energy recovery from pyrolysis and gasification of mangrove," Applied Energy, Elsevier, vol. 91(1), pages 173-179.
- Kalu Samuel Ukanwa & Kumar Patchigolla & Ruben Sakrabani & Edward Anthony & Sachin Mandavgane, 2019. "A Review of Chemicals to Produce Activated Carbon from Agricultural Waste Biomass," Sustainability, MDPI, vol. 11(22), pages 1-35, November.
- Yang, Huayu & Zhang, Yuhao & Gao, Wenhua & Yan, Bowen & Zhao, Jianxin & Zhang, Hao & Chen, Wei & Fan, Daming, 2021. "Steam replacement strategy using microwave resonance: A future system for continuous-flow heating applications," Applied Energy, Elsevier, vol. 283(C).
- Chen, Yuxiang & Li, Chao & Zhang, Lijun & Zhang, Shu & Xiang, Jun & Hu, Song & Wang, Yi & Hu, Xun, 2024. "Varied directions of heat flow and emission of volatiles impact evolution of products in pyrolysis of wet and dry pine needles," Renewable Energy, Elsevier, vol. 226(C).
- Zhang, Lianjie & Tan, Yongdong & Cai, Dongqiang & Sun, Jifu & Zhang, Yue & Li, Longzhi & Zhang, Qiang & Zou, Guifu & Song, Zhanlong & Bai, Yonghui, 2022. "Enhanced pyrolysis of woody biomass under interaction of microwave and needle-shape metal and its production properties," Energy, Elsevier, vol. 249(C).
- Siddique, Istiaq Jamil & Salema, Arshad Adam, 2023. "Unraveling the metallic thermocouple effects during microwave heating of biomass," Energy, Elsevier, vol. 267(C).
- Chen, Guanyi & Li, Jian & Cheng, Zhanjun & Yan, Beibei & Ma, Wenchao & Yao, Jingang, 2018. "Investigation on model compound of biomass gasification tar cracking in microwave furnace: Comparative research," Applied Energy, Elsevier, vol. 217(C), pages 249-257.
- Siddique, Istiaq Jamil & Salema, Arshad Adam & Antunes, Elsa & Vinu, Ravikrishnan, 2022. "Technical challenges in scaling up the microwave technology for biomass processing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
- Abomohra, Abd El-Fatah & Sheikh, Huda M.A. & El-Naggar, Amal H. & Wang, Qingyuan, 2021. "Microwave vacuum co-pyrolysis of waste plastic and seaweeds for enhanced crude bio-oil recovery: Experimental and feasibility study towards industrialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
More about this item
Keywords
Sludge; Microwave pyrolysis modes; Dielectric constants; Heat conversion mechanisms;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:266:y:2020:i:c:s0306261920303676. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.