IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v306y2024ics0360544224021972.html
   My bibliography  Save this article

Microwave-assisted pyrolysis of industrial biomass waste: Insights into kinetic, characteristics and intrinsic mechanisms

Author

Listed:
  • Liu, Yang
  • Ao, Wenya
  • Fu, Jie
  • Siyal, Asif Ali
  • An, Qing
  • Zhou, Chunbao
  • Liu, Chenglong
  • Zhang, Yingwen
  • Chen, Zhiwen
  • Yun, Huimin
  • Dai, Jianjun
  • Bi, Xiaotao

Abstract

Microwave-assisted pyrolysis is the preferred technology for enhancing the production of fuels and valuable chemicals. Therefore, pyrolysis experiments of furfural residue (FR) were performed using microwave equipment without microwave-absorbing additives. Further, to explore the interactions and intrinsic mechanisms of biomass components, thermogravimetric (TG), kinetic calculation, Py-GC/MS and TG-MS were also employed. Results showed that the temperatures and catalysts both affect the yields and compositions of products. Moreover, kinetic calculations showed a high-level consistency between FR pyrolysis and P3 mechanism. The product analysis also helps in the resolution of pyrolysis mechanism. For example, crystal substances in biochar were mainly SiO2, K2SO4, KAlSi3O8, and K2SO4 enhanced the reaction degree of biomass. While for bio-oil, the yield reached maximum (∼25 wt%) at ∼550 °C. The pH of bio-oil was acidic (2–4.3), and the main product in bio-oil was phenols, which was found the highest (84.63 %) at 700 °C. Interestingly, the interaction of cellulose and lignin promoted light hydrocarbon production. This research unveils innovative perspectives on the intrinsic mechanisms underlying microwave-assisted pyrolysis of biomass, which provides guidance for optimization of the microwave-assisted pyrolysis technology.

Suggested Citation

  • Liu, Yang & Ao, Wenya & Fu, Jie & Siyal, Asif Ali & An, Qing & Zhou, Chunbao & Liu, Chenglong & Zhang, Yingwen & Chen, Zhiwen & Yun, Huimin & Dai, Jianjun & Bi, Xiaotao, 2024. "Microwave-assisted pyrolysis of industrial biomass waste: Insights into kinetic, characteristics and intrinsic mechanisms," Energy, Elsevier, vol. 306(C).
  • Handle: RePEc:eee:energy:v:306:y:2024:i:c:s0360544224021972
    DOI: 10.1016/j.energy.2024.132423
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224021972
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132423?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sahoo, Abhisek & Kumar, Sachin & Mohanty, Kaustubha, 2021. "Kinetic and thermodynamic analysis of Putranjiva roxburghii (putranjiva) and Cassia fistula (amaltas) non-edible oilseeds using thermogravimetric analyzer," Renewable Energy, Elsevier, vol. 165(P1), pages 261-277.
    2. Chen, Wei & Fang, Yang & Li, Kaixu & Chen, Zhiqun & Xia, Mingwei & Gong, Meng & Chen, Yingquan & Yang, Haiping & Tu, Xin & Chen, Hanping, 2020. "Bamboo wastes catalytic pyrolysis with N-doped biochar catalyst for phenols products," Applied Energy, Elsevier, vol. 260(C).
    3. Ellison, Candice Raffaela & Hoff, Ryan & Mărculescu, Cosmin & Boldor, Dorin, 2020. "Investigation of microwave-assisted pyrolysis of biomass with char in a rectangular waveguide applicator with built-in phase-shifting," Applied Energy, Elsevier, vol. 259(C).
    4. Gu, Suqian & Xu, Zhiqiang & Ren, Yangguang & Tu, Yanan & Sun, Meijie & Liu, Xiangyang, 2021. "An approach for upgrading lignite to improve slurryability: Blending with direct coal liquefaction residue under microwave-assisted pyrolysis," Energy, Elsevier, vol. 222(C).
    5. Chen, Guanyi & Li, Jian & Cheng, Zhanjun & Yan, Beibei & Ma, Wenchao & Yao, Jingang, 2018. "Investigation on model compound of biomass gasification tar cracking in microwave furnace: Comparative research," Applied Energy, Elsevier, vol. 217(C), pages 249-257.
    6. Aniza, Ria & Chen, Wei-Hsin & Lin, Yu-Ying & Tran, Khanh-Quang & Chang, Jo-Shu & Lam, Su Shiung & Park, Young-Kwon & Kwon, Eilhann E. & Tabatabaei, Meisam, 2021. "Independent parallel pyrolysis kinetics of extracted proteins and lipids as well as model carbohydrates in microalgae," Applied Energy, Elsevier, vol. 300(C).
    7. Bai, Jing & Gao, Hang & Xu, Junhao & Li, Lefei & Zheng, Peng & Li, Pan & Song, Jiande & Chang, Chun & Pang, Shusheng, 2022. "Comprehensive study on the pyrolysis product characteristics of tobacco stems based on a novel nitrogen-enriched pyrolysis method," Energy, Elsevier, vol. 242(C).
    8. Liu, Yang & Ran, Chunmei & Siddiqui, Azka R. & Siyal, Asif Ali & Song, Yongmeng & Dai, Jianjun & Chtaeva, Polina & Fu, Jie & Ao, Wenya & Deng, Zeyu & Jiang, Zhihui & Zhang, Tianhao, 2020. "Characterization and analysis of sludge char prepared from bench-scale fluidized bed pyrolysis of sewage sludge," Energy, Elsevier, vol. 200(C).
    9. Wan Mahari, Wan Adibah & Chong, Cheng Tung & Cheng, Chin Kui & Lee, Chern Leing & Hendrata, Kristian & Yuh Yek, Peter Nai & Ma, Nyuk Ling & Lam, Su Shiung, 2018. "Production of value-added liquid fuel via microwave co-pyrolysis of used frying oil and plastic waste," Energy, Elsevier, vol. 162(C), pages 309-317.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Juan & Sun, Shichang & Chen, Xing & Lin, Junhao & Ma, Rui & Zhang, Rui & Fang, Lin, 2021. "In-depth exploration of the energy utilization and pyrolysis mechanism of advanced continuous microwave pyrolysis," Applied Energy, Elsevier, vol. 292(C).
    2. Che, Yuechi & Jia, Xiaopeng & Hu, Yongjie & Li, Jian & Wang, Zhi & Yan, Beibei & Chen, Guanyi, 2024. "Microwave driven steam reforming of biomass model tar based on metal organic frameworks (ZIF-67) derived Co/C catalyst," Energy, Elsevier, vol. 304(C).
    3. Santhoshkumar, A. & Ramanathan, Anand, 2020. "Recycling of waste engine oil through pyrolysis process for the production of diesel like fuel and its uses in diesel engine," Energy, Elsevier, vol. 197(C).
    4. Liu, Zihan & Li, Pan & Chang, Chun & Wang, Xianhua & Song, Jiande & Fang, Shuqi & Pang, Shusheng, 2022. "Influence of metal chloride modified biochar on products characteristics from biomass catalytic pyrolysis," Energy, Elsevier, vol. 250(C).
    5. Rafael Estevez & Laura Aguado-Deblas & Francisco J. López-Tenllado & Felipa M. Bautista & Antonio A. Romero & Diego Luna, 2024. "Study on the Performance and Emissions of Triple Blends of Diesel/Waste Plastic Oil/Vegetable Oil in a Diesel Engine: Advancing Eco-Friendly Solutions," Energies, MDPI, vol. 17(6), pages 1-17, March.
    6. Sun, Jiaman & Luo, Juan & Lin, Junhao & Ma, Rui & Sun, Shichang & Fang, Lin & Li, Haowen, 2022. "Study of co-pyrolysis endpoint and product conversion of plastic and biomass using microwave thermogravimetric technology," Energy, Elsevier, vol. 247(C).
    7. Tian, Beile & Mao, Songbo & Guo, Feiqiang & Bai, Jiaming & Shu, Rui & Qian, Lin & Liu, Qi, 2022. "Monolithic biochar-supported cobalt-based catalysts with high-activity and superior-stability for biomass tar reforming," Energy, Elsevier, vol. 242(C).
    8. Kumar, Manish & Bolan, Shiv & Padhye, Lokesh P. & Konarova, Muxina & Foong, Shin Ying & Lam, Su Shiung & Wagland, Stuart & Cao, Runzi & Li, Yang & Batalha, Nuno & Ahmed, Mohamed & Pandey, Ashok & Sidd, 2023. "Retrieving back plastic wastes for conversion to value added petrochemicals: opportunities, challenges and outlooks," Applied Energy, Elsevier, vol. 345(C).
    9. Aniza, Ria & Chen, Wei-Hsin & Lin, Yu-Ying & Tran, Khanh-Quang & Chang, Jo-Shu & Lam, Su Shiung & Park, Young-Kwon & Kwon, Eilhann E. & Tabatabaei, Meisam, 2021. "Independent parallel pyrolysis kinetics of extracted proteins and lipids as well as model carbohydrates in microalgae," Applied Energy, Elsevier, vol. 300(C).
    10. Yang, Haiping & Chen, Zhiqun & Chen, Wei & Chen, Yingquan & Wang, Xianhua & Chen, Hanping, 2020. "Role of porous structure and active O-containing groups of activated biochar catalyst during biomass catalytic pyrolysis," Energy, Elsevier, vol. 210(C).
    11. Fan, Liangliang & Liu, Lei & Xiao, Zhiguo & Su, Zheyang & Huang, Pei & Peng, Hongyu & Lv, Sen & Jiang, Haiwei & Ruan, Roger & Chen, Paul & Zhou, Wenguang, 2021. "Comparative study of continuous-stirred and batch microwave pyrolysis of linear low-density polyethylene in the presence/absence of HZSM-5," Energy, Elsevier, vol. 228(C).
    12. Aktas, Fatih & Mavukwana, Athi-enkosi & Burra, Kiran Raj Goud & Gupta, Ashwani K., 2024. "Role of spent FCC catalyst in pyrolysis and CO2-assisted gasification of pinewood," Applied Energy, Elsevier, vol. 366(C).
    13. Yue, Xia & Chen, Dezhen & Luo, Jia & Xin, Qianfan & Huang, Zhen, 2020. "Upgrading of reed pyrolysis oil by using its biochar-based catalytic esterification and the influence of reed sources," Applied Energy, Elsevier, vol. 268(C).
    14. Wojciech Jerzak & Esther Acha & Bin Li, 2024. "Comprehensive Review of Biomass Pyrolysis: Conventional and Advanced Technologies, Reactor Designs, Product Compositions and Yields, and Techno-Economic Analysis," Energies, MDPI, vol. 17(20), pages 1-31, October.
    15. Sahu, Parmanand & Gangil, Sandip & Bhargav, Vinod Kumar, 2023. "Biopolymeric transitions under pyrolytic thermal degradation of Pigeon pea stalk," Renewable Energy, Elsevier, vol. 206(C), pages 157-167.
    16. Ren, Xueyong & Shanb Ghazani, Mohammad & Zhu, Hui & Ao, Wenya & Zhang, Han & Moreside, Emma & Zhu, Jinjiao & Yang, Pu & Zhong, Na & Bi, Xiaotao, 2022. "Challenges and opportunities in microwave-assisted catalytic pyrolysis of biomass: A review," Applied Energy, Elsevier, vol. 315(C).
    17. Gao, Mingqiang & Cheng, Cheng & Miao, Zhenyong & Wan, Keji & He, Qiongqiong, 2023. "Physicochemical properties, combustion kinetics and thermodynamics of oxidized lignite," Energy, Elsevier, vol. 268(C).
    18. Li, Jian & Tao, Junyu & Yan, Beibei & Cheng, Kexin & Chen, Guanyi & Hu, Jianli, 2020. "Microwave reforming with char-supported Nickel-Cerium catalysts: A potential approach for thorough conversion of biomass tar model compound," Applied Energy, Elsevier, vol. 261(C).
    19. Yang, Liu & Guo, Mengyao & Qian, Yiwen & Xu, Deliang & Gholizadeh, Mortaza & Karnowo, & Zhang, Hong & Hu, Xun & Zhang, Shu, 2022. "The effects of interactions between fiberboard-derived volatiles and glucose-derived biochar on N retention and char structure during the decoupled pyrolysis of fiberboard and glucose using a double-b," Renewable Energy, Elsevier, vol. 191(C), pages 134-140.
    20. Bai, Jing & Li, Lefei & Chen, Zhiyong & Chang, Chun & Pang, Shusheng & Li, Pan, 2023. "Study on the optimization of hydrothermal liquefaction performance of tobacco stem and the high value utilization of catalytic products," Energy, Elsevier, vol. 281(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:306:y:2024:i:c:s0360544224021972. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.