Building Energy Saving for Indoor Cooling and Heating: Mechanism and Comparison on Temperature Difference
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Gebrail Bekdaş & Yaren Aydın & Ümit Isıkdağ & Aidin Nobahar Sadeghifam & Sanghun Kim & Zong Woo Geem, 2023. "Prediction of Cooling Load of Tropical Buildings with Machine Learning," Sustainability, MDPI, vol. 15(11), pages 1-17, June.
- Ghahramani, Ali & Zhang, Kenan & Dutta, Kanu & Yang, Zheng & Becerik-Gerber, Burcin, 2016. "Energy savings from temperature setpoints and deadband: Quantifying the influence of building and system properties on savings," Applied Energy, Elsevier, vol. 165(C), pages 930-942.
- Yingyue Li & Hongjun Li & Rui Miao & He Qi & Yi Zhang, 2023. "Energy–Environment–Economy (3E) Analysis of the Performance of Introducing Photovoltaic and Energy Storage Systems into Residential Buildings: A Case Study in Shenzhen, China," Sustainability, MDPI, vol. 15(11), pages 1-25, June.
- Park, Young Sung & Jeong, Ji Hwan & Ahn, Byoung Ha, 2014. "Heat pump control method based on direct measurement of evaporation pressure to improve energy efficiency and indoor air temperature stability at a low cooling load condition," Applied Energy, Elsevier, vol. 132(C), pages 99-107.
- Gao, Hao & Koch, Christian & Wu, Yupeng, 2019. "Building information modelling based building energy modelling: A review," Applied Energy, Elsevier, vol. 238(C), pages 320-343.
- Yan, Huaxia & Xia, Yudong & Deng, Shiming, 2017. "Simulation study on a three-evaporator air conditioning system for simultaneous indoor air temperature and humidity control," Applied Energy, Elsevier, vol. 207(C), pages 294-304.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lim, Dae Kyu & Ahn, Byoung Ha & Jeong, Ji Hwan, 2018. "Method to control an air conditioner by directly measuring the relative humidity of indoor air to improve the comfort and energy efficiency," Applied Energy, Elsevier, vol. 215(C), pages 290-299.
- Mihail Mateev, 2024. "Digital Twins Concept For Energy-Efficient Smart Buildings," Yearbook of the Faculty of Economics and Business Administration, Sofia University, Faculty of Economics and Business Administration, Sofia University St Kliment Ohridski - Bulgaria, vol. 23(1), pages 187-198, June.
- Beata Piotrowska & Daniel Słyś, 2023. "Analysis of the Life Cycle Cost of a Heat Recovery System from Greywater Using a Vertical “Tube-in-Tube” Heat Exchanger: Case Study of Poland," Resources, MDPI, vol. 12(9), pages 1-17, August.
- Ghahramani, Ali & Pantelic, Jovan & Lindberg, Casey & Mehl, Matthias & Srinivasan, Karthik & Gilligan, Brian & Arens, Edward, 2018. "Learning occupants’ workplace interactions from wearable and stationary ambient sensing systems," Applied Energy, Elsevier, vol. 230(C), pages 42-51.
- Lešnik, Maja & Kravanja, Stojan & Premrov, Miroslav & Žegarac Leskovar, Vesna, 2020. "Optimal design of timber-glass upgrade modules for vertical building extension from the viewpoints of energy efficiency and visual comfort," Applied Energy, Elsevier, vol. 270(C).
- Azar, Elie & Nikolopoulou, Christina & Papadopoulos, Sokratis, 2016. "Integrating and optimizing metrics of sustainable building performance using human-focused agent-based modeling," Applied Energy, Elsevier, vol. 183(C), pages 926-937.
- Sanjin Gumbarević & Ivana Burcar Dunović & Bojan Milovanović & Mergim Gaši, 2020. "Method for Building Information Modeling Supported Project Control of Nearly Zero-Energy Building Delivery," Energies, MDPI, vol. 13(20), pages 1-21, October.
- Zhang, Zi-Yang & Zhang, Chun-Lu & Xiao, Fu, 2020. "Energy-efficient decentralized control method with enhanced robustness for multi-evaporator air conditioning systems," Applied Energy, Elsevier, vol. 279(C).
- Afroz, Zakia & Urmee, Tania & Shafiullah, G.M. & Higgins, Gary, 2018. "Real-time prediction model for indoor temperature in a commercial building," Applied Energy, Elsevier, vol. 231(C), pages 29-53.
- Zhang, Sheng & Liu, Jun & Zhang, Xia & Wang, Fenghao, 2024. "Properly shortening design time scale of medium-deep borehole heat exchanger for high building heating performances with high computational efficiency," Energy, Elsevier, vol. 290(C).
- Zhang, Xiangyu & Pipattanasomporn, Manisa & Rahman, Saifur, 2017. "A self-learning algorithm for coordinated control of rooftop units in small- and medium-sized commercial buildings," Applied Energy, Elsevier, vol. 205(C), pages 1034-1049.
- Clyde Zhengdao Li & Yiqian Deng & Yingyi Ya & Vivian W. Y. Tam & Chen Lu, 2023. "Applications of Information Technology in Building Carbon Flow," Sustainability, MDPI, vol. 15(23), pages 1-23, December.
- Yu Cao & Liyan Huang & Nur Mardhiyah Aziz & Syahrul Nizam Kamaruzzaman, 2022. "Building Information Modelling (BIM) Capabilities in the Design and Planning of Rural Settlements in China: A Systematic Review," Land, MDPI, vol. 11(10), pages 1-34, October.
- Romero Rodríguez, Laura & Sánchez Ramos, José & Álvarez Domínguez, Servando & Eicker, Ursula, 2018. "Contributions of heat pumps to demand response: A case study of a plus-energy dwelling," Applied Energy, Elsevier, vol. 214(C), pages 191-204.
- Sim, Jaehoon & Lee, Hyoin & Jeong, Ji Hwan, 2021. "Optimal design of variable-path heat exchanger for energy efficiency improvement of air-source heat pump system," Applied Energy, Elsevier, vol. 290(C).
- Bui, Dac-Khuong & Nguyen, Tuan Ngoc & Ngo, Tuan Duc & Nguyen-Xuan, H., 2020. "An artificial neural network (ANN) expert system enhanced with the electromagnetism-based firefly algorithm (EFA) for predicting the energy consumption in buildings," Energy, Elsevier, vol. 190(C).
- Fernanda Rodrigues & Ana Dinis Alves & Raquel Matos, 2022. "Construction Management Supported by BIM and a Business Intelligence Tool," Energies, MDPI, vol. 15(9), pages 1-14, May.
- Quan Wen & Zhongfu Li & Yifeng Peng & Baorong Guo, 2020. "Assessing the Effectiveness of Building Information Modeling in Developing Green Buildings from a Lifecycle Perspective," Sustainability, MDPI, vol. 12(23), pages 1-20, November.
- Zhang, Fan & de Dear, Richard & Hancock, Peter, 2019. "Effects of moderate thermal environments on cognitive performance: A multidisciplinary review," Applied Energy, Elsevier, vol. 236(C), pages 760-777.
- Jordan Higgins & Aditya Ramnarayan & Roxana Family & Michael Ohadi, 2024. "Analysis of Energy Efficiency Opportunities for a Public Transportation Maintenance Facility—A Case Study," Energies, MDPI, vol. 17(8), pages 1-20, April.
More about this item
Keywords
building simulation; indoor air; air conditioning; temperature difference; heating; cooling; energy efficiency;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:11241-:d:1197376. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.