IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v212y2018icp834-849.html
   My bibliography  Save this article

Planning regional-scale electric power systems under uncertainty: A case study of Jing-Jin-Ji region, China

Author

Listed:
  • Yu, L.
  • Li, Y.P.
  • Huang, G.H.
  • Fan, Y.R.
  • Yin, S.

Abstract

In this study, a copula-based stochastic fuzzy-credibility programming (CSFP) method is developed for planning regional-scale electric power systems (REPS). CSFP cannot only deal with multiple uncertainties presented as random variables, fuzzy sets, interval values as well as their combinations, but also reflect uncertain interactions among multiple random variables owning different probability distributions and having previously unknown correlations. Then, a CSFP-REPS model is formulated for planning the electric power systems (EPS) of the Jing-Jin-Ji region, where multiple scenarios with different joint and individual probabilities as well as different credibility levels are examined. Results reveal that electricity shortage would offset [4.8, 5.2]% and system cost would reduce [3.2, 3.3]% under synergistic effect scheme. Results also disclose that the study region’s future electricity-supply pattern would tend to the transition to renewable energies and the share of renewable energies would increase approximately 10% over the planning horizon. Compared to the conventional stochastic programming, the developed CSFP method can more effectively analyze individual and interactive effects of multiple random variables, so that the loss of uncertain information can be mitigated and the robustness of solution can be enhanced. Moreover, based on the main effect analysis and regression analysis, CSFP-REPS can provide multiple joint planning strategies in a cost- and computation-effective way. Findings are useful for reflecting interactions among multiple random variables and disclosing their joint effects on modeling outputs of REPS planning problems.

Suggested Citation

  • Yu, L. & Li, Y.P. & Huang, G.H. & Fan, Y.R. & Yin, S., 2018. "Planning regional-scale electric power systems under uncertainty: A case study of Jing-Jin-Ji region, China," Applied Energy, Elsevier, vol. 212(C), pages 834-849.
  • Handle: RePEc:eee:appene:v:212:y:2018:i:c:p:834-849
    DOI: 10.1016/j.apenergy.2017.12.089
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917318123
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.12.089?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Motalleb, Mahdi & Ghorbani, Reza, 2017. "Non-cooperative game-theoretic model of demand response aggregator competition for selling stored energy in storage devices," Applied Energy, Elsevier, vol. 202(C), pages 581-596.
    2. Herbes, Carsten & Brummer, Vasco & Rognli, Judith & Blazejewski, Susanne & Gericke, Naomi, 2017. "Responding to policy change: New business models for renewable energy cooperatives – Barriers perceived by cooperatives’ members," Energy Policy, Elsevier, vol. 109(C), pages 82-95.
    3. Zhang, Y.M. & Huang, G.H. & Lin, Q.G. & Lu, H.W., 2012. "Integer fuzzy credibility constrained programming for power system management," Energy, Elsevier, vol. 38(1), pages 398-405.
    4. Narayan, Apurva & Ponnambalam, Kumaraswamy, 2017. "Risk-averse stochastic programming approach for microgrid planning under uncertainty," Renewable Energy, Elsevier, vol. 101(C), pages 399-408.
    5. Sun, Xudong & Li, Jiashuo & Qiao, Han & Zhang, Bo, 2017. "Energy implications of China's regional development: New insights from multi-regional input-output analysis," Applied Energy, Elsevier, vol. 196(C), pages 118-131.
    6. Yu, L. & Li, Y.P. & Huang, G.H., 2016. "A fuzzy-stochastic simulation-optimization model for planning electric power systems with considering peak-electricity demand: A case study of Qingdao, China," Energy, Elsevier, vol. 98(C), pages 190-203.
    7. Chen, F. & Huang, G.H. & Fan, Y.R. & Chen, J.P., 2017. "A copula-based fuzzy chance-constrained programming model and its application to electric power generation systems planning," Applied Energy, Elsevier, vol. 187(C), pages 291-309.
    8. Huang, Yun-Hsun & Wu, Jung-Hua & Hsu, Yu-Ju, 2016. "Two-stage stochastic programming model for the regional-scale electricity planning under demand uncertainty," Energy, Elsevier, vol. 116(P1), pages 1145-1157.
    9. Perera, A.T.D. & Nik, Vahid M. & Mauree, Dasaraden & Scartezzini, Jean-Louis, 2017. "Electrical hubs: An effective way to integrate non-dispatchable renewable energy sources with minimum impact to the grid," Applied Energy, Elsevier, vol. 190(C), pages 232-248.
    10. Kshirsagar, Charudatta M. & Anand, Ramanathan, 2017. "Artificial neural network applied forecast on a parametric study of Calophyllum inophyllum methyl ester-diesel engine out responses," Applied Energy, Elsevier, vol. 189(C), pages 555-567.
    11. Rong, Aiying & Lahdelma, Risto, 2008. "Fuzzy chance constrained linear programming model for optimizing the scrap charge in steel production," European Journal of Operational Research, Elsevier, vol. 186(3), pages 953-964, May.
    12. Yu, L. & Li, Y.P. & Huang, G.H. & Fan, Y.R. & Nie, S., 2018. "A copula-based flexible-stochastic programming method for planning regional energy system under multiple uncertainties: A case study of the urban agglomeration of Beijing and Tianjin," Applied Energy, Elsevier, vol. 210(C), pages 60-74.
    13. Lin, Boqiang & Wu, Wei, 2017. "Cost of long distance electricity transmission in China," Energy Policy, Elsevier, vol. 109(C), pages 132-140.
    14. Mirjat, Nayyar Hussain & Uqaili, Mohammad Aslam & Harijan, Khanji & Valasai, Gordhan Das & Shaikh, Faheemullah & Waris, M., 2017. "A review of energy and power planning and policies of Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 110-127.
    15. Devlin, Ger & Talbot, Bruce, 2014. "Deriving cooperative biomass resource transport supply strategies in meeting co-firing energy regulations: A case for peat and wood fibre in Ireland," Applied Energy, Elsevier, vol. 113(C), pages 1700-1709.
    16. Cai, Y.P. & Huang, G.H. & Yang, Z.F. & Tan, Q., 2009. "Identification of optimal strategies for energy management systems planning under multiple uncertainties," Applied Energy, Elsevier, vol. 86(4), pages 480-495, April.
    17. A. Charnes & W. W. Cooper, 1983. "Response to "Decision Problems Under Risk and Chance Constrained Programming: Dilemmas in the Transition"," Management Science, INFORMS, vol. 29(6), pages 750-753, June.
    18. Zhu, Y. & Li, Y.P. & Huang, G.H. & Fu, D.Z., 2013. "Modeling for planning municipal electric power systems associated with air pollution control – A case study of Beijing," Energy, Elsevier, vol. 60(C), pages 168-186.
    19. Prebeg, Pero & Gasparovic, Goran & Krajacic, Goran & Duic, Neven, 2016. "Long-term energy planning of Croatian power system using multi-objective optimization with focus on renewable energy and integration of electric vehicles," Applied Energy, Elsevier, vol. 184(C), pages 1493-1507.
    20. Shen, Jianjian & Cheng, Chuntian & Wu, Xinyu & Cheng, Xiong & Li, Weidong & Lu, Jianyu, 2014. "Optimization of peak loads among multiple provincial power grids under a central dispatching authority," Energy, Elsevier, vol. 74(C), pages 494-505.
    21. Park, Heejung & Baldick, Ross, 2016. "Multi-year stochastic generation capacity expansion planning under environmental energy policy," Applied Energy, Elsevier, vol. 183(C), pages 737-745.
    22. Zhou, Xiong & Huang, Guohe & Zhu, Hua & Chen, Jiapei & Xu, Jinliang, 2015. "Chance-constrained two-stage fractional optimization for planning regional energy systems in British Columbia, Canada," Applied Energy, Elsevier, vol. 154(C), pages 663-677.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lv, J. & Li, Y.P. & Huang, G.H. & Ding, Y.K. & Li, X. & Li, Y., 2022. "Planning energy economy and eco-environment nexus system under uncertainty: A copula-based stochastic multi-level programming method," Applied Energy, Elsevier, vol. 312(C).
    2. Zhang, Shenxi & Cheng, Haozhong & Li, Ke & Tai, Nengling & Wang, Dan & Li, Furong, 2018. "Multi-objective distributed generation planning in distribution network considering correlations among uncertainties," Applied Energy, Elsevier, vol. 226(C), pages 743-755.
    3. Zhang, Xiaoyue & Huang, Guohe & Xie, Yulei & Liu, Lirong & Song, Tangnyu, 2022. "A coupled non-deterministic optimization and mixed-level factorial analysis model for power generation expansion planning – A case study of Jing-Jin-Ji metropolitan region, China," Applied Energy, Elsevier, vol. 311(C).
    4. Liu, Jia & Cheng, Haozhong & Zeng, Pingliang & Yao, Liangzhong & Shang, Ce & Tian, Yuan, 2018. "Decentralized stochastic optimization based planning of integrated transmission and distribution networks with distributed generation penetration," Applied Energy, Elsevier, vol. 220(C), pages 800-813.
    5. Cao, R. & Huang, G.H. & Chen, J.P. & Li, Y.P. & He, C.Y., 2021. "A chance-constrained urban agglomeration energy model for cooperative carbon emission management," Energy, Elsevier, vol. 223(C).
    6. Xu, Ye & Tan, Junyuan & Wang, Xu & Li, Wei & He, Xing & Hu, Xiaoguang & Fan, Yurui, 2022. "Synergetic management of water-energy-food nexus system and GHG emissions under multiple uncertainties: An inexact fractional fuzzy chance constraint programming method," Agricultural Water Management, Elsevier, vol. 262(C).
    7. Yin, J.N. & Huang, G.H. & Xie, Y.L. & An, Y.K., 2021. "Carbon-subsidized inter-regional electric power system planning under cost-risk tradeoff and uncertainty: A case study of Inner Mongolia, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. Gao, Tong & Fang, Delin & Chen, Bin, 2020. "Multi-regional input-output and linkage analysis for water-PM2.5 nexus," Applied Energy, Elsevier, vol. 268(C).
    9. Yanzheng Liu & Jicong Tan & Zhao Wei & Ying Zhu & Shiyu Chang & Yexin Li & Shaoyi Li & Yong Guo, 2024. "Analysis of Extreme Random Uncertainty in Energy and Environment Systems for Coal-Dependent City by a Copula-Based Interval Cost–Benefit Stochastic Approach," Sustainability, MDPI, vol. 16(2), pages 1-22, January.
    10. Tsao, Yu-Chung & Thanh, Vo-Van & Chang, Yi-Ying & Wei, Hsi-Hsien, 2021. "COVID-19: Government subsidy models for sustainable energy supply with disruption risks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    11. Wang, Yu & Lu, Yanli & Xu, Ye & Zheng, Lijun & Fan, Yurui, 2023. "A factorial inexact copula stochastic programming (FICSP) approach for water-energy- food nexus system management," Agricultural Water Management, Elsevier, vol. 277(C).
    12. Chen, J.P. & Huang, G. & Baetz, B.W. & Lin, Q.G. & Dong, C. & Cai, Y.P., 2018. "Integrated inexact energy systems planning under climate change: A case study of Yukon Territory, Canada," Applied Energy, Elsevier, vol. 229(C), pages 493-504.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, L. & Li, Y.P. & Huang, G.H. & Fan, Y.R. & Nie, S., 2018. "A copula-based flexible-stochastic programming method for planning regional energy system under multiple uncertainties: A case study of the urban agglomeration of Beijing and Tianjin," Applied Energy, Elsevier, vol. 210(C), pages 60-74.
    2. Yu, L. & Xiao, Y. & Jiang, S. & Li, Y.P. & Fan, Y.R. & Huang, G.H. & Lv, J. & Zuo, Q.T. & Wang, F.Q., 2020. "A copula-based fuzzy interval-random programming approach for planning water-energy nexus system under uncertainty," Energy, Elsevier, vol. 196(C).
    3. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    4. Ioannou, Anastasia & Angus, Andrew & Brennan, Feargal, 2017. "Risk-based methods for sustainable energy system planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 602-615.
    5. Yu, L. & Li, Y.P. & Huang, G.H., 2019. "Planning municipal-scale mixed energy system for stimulating renewable energy under multiple uncertainties - The City of Qingdao in Shandong Province, China," Energy, Elsevier, vol. 166(C), pages 1120-1133.
    6. Nie, S. & Huang, Z.C. & Huang, G.H. & Yu, L. & Liu, J., 2018. "Optimization of electric power systems with cost minimization and environmental-impact mitigation under multiple uncertainties," Applied Energy, Elsevier, vol. 221(C), pages 249-267.
    7. Xie, Y.L. & Xia, D.H. & Ji, L. & Zhou, W.N. & Huang, G.H., 2017. "An inexact cost-risk balanced model for regional energy structure adjustment management and resources environmental effect analysis-a case study of Shandong province, China," Energy, Elsevier, vol. 126(C), pages 374-391.
    8. Liu, J. & Nie, S. & Shan, B.G. & Li, Y.P. & Huang, G.H. & Liu, Z.P., 2019. "Development of an interval-credibility-chance constrained energy-water nexus system planning model—a case study of Xiamen, China," Energy, Elsevier, vol. 181(C), pages 677-693.
    9. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    10. Jin, Hongyang & Li, Zhengshuo & Sun, Hongbin & Guo, Qinglai & Chen, Runze & Wang, Bin, 2017. "A robust aggregate model and the two-stage solution method to incorporate energy intensive enterprises in power system unit commitment," Applied Energy, Elsevier, vol. 206(C), pages 1364-1378.
    11. Changyu Zhou & Guohe Huang & Jiapei Chen, 2018. "A Multi-Objective Energy and Environmental Systems Planning Model: Management of Uncertainties and Risks for Shanxi Province, China," Energies, MDPI, vol. 11(10), pages 1-21, October.
    12. Tianyu Lu & Hongyu Li, 2024. "Can China’s Regional Industrial Chain Innovation and Reform Policy Make the Impossible Triangle of Energy Attainable? A Causal Inference Study on the Effect of Improving Industrial Chain Resilience," Energies, MDPI, vol. 17(10), pages 1-33, May.
    13. Cao, M.F. & Huang, G.H. & Lin, Q.G., 2010. "Integer programming with random-boundary intervals for planning municipal power systems," Applied Energy, Elsevier, vol. 87(8), pages 2506-2516, August.
    14. Rego, Erik Eduardo & Costa, Oswaldo L.V. & Ribeiro, Celma de Oliveira & Lima Filho, Roberto Ivo da R. & Takada, Hellinton & Stern, Julio, 2020. "The trade-off between demand growth and renewables: A multiperiod electricity planning model under CO2 emission constraints," Energy, Elsevier, vol. 213(C).
    15. Dagoumas, Athanasios S. & Koltsaklis, Nikolaos E., 2019. "Review of models for integrating renewable energy in the generation expansion planning," Applied Energy, Elsevier, vol. 242(C), pages 1573-1587.
    16. Deveci, Kaan & Güler, Önder, 2020. "A CMOPSO based multi-objective optimization of renewable energy planning: Case of Turkey," Renewable Energy, Elsevier, vol. 155(C), pages 578-590.
    17. Perera, A.T.D. & Wickramasinghe, P.U. & Nik, Vahid M. & Scartezzini, Jean-Louis, 2019. "Machine learning methods to assist energy system optimization," Applied Energy, Elsevier, vol. 243(C), pages 191-205.
    18. Perera, A.T.D. & Soga, Kenichi & Xu, Yujie & Nico, Peter S. & Hong, Tianzhen, 2023. "Enhancing flexibility for climate change using seasonal energy storage (aquifer thermal energy storage) in distributed energy systems," Applied Energy, Elsevier, vol. 340(C).
    19. Zhen, J.L. & Huang, G.H. & Li, W. & Liu, Z.P. & Wu, C.B., 2017. "An inexact optimization model for regional electric system steady operation management considering integrated renewable resources," Energy, Elsevier, vol. 135(C), pages 195-209.
    20. Pizarro-Alonso, Amalia & Ravn, Hans & Münster, Marie, 2019. "Uncertainties towards a fossil-free system with high integration of wind energy in long-term planning," Applied Energy, Elsevier, vol. 253(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:212:y:2018:i:c:p:834-849. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.