IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v183y2016icp737-745.html
   My bibliography  Save this article

Multi-year stochastic generation capacity expansion planning under environmental energy policy

Author

Listed:
  • Park, Heejung
  • Baldick, Ross

Abstract

We present a multi-year stochastic generation capacity expansion planning model to investigate changes in generation building decisions and carbon dioxide (CO2) emissions under environmental energy policies, including carbon tax and a renewable portfolio standard (RPS). A multi-stage stochastic mixed-integer program is formulated to solve the generation expansion problem. The uncertain parameters of load and wind availability are modeled as random variables and their independent and identically distributed (i.i.d.) random samples are generated using the Gaussian copula method, which represents the correlation between random variables explicitly. A multi-stage scenario tree is formed with the generated random samples, and the scenario tree is reduced for improved computation performance. A rolling-horizon method is applied to obtain one generation plan at each stage.

Suggested Citation

  • Park, Heejung & Baldick, Ross, 2016. "Multi-year stochastic generation capacity expansion planning under environmental energy policy," Applied Energy, Elsevier, vol. 183(C), pages 737-745.
  • Handle: RePEc:eee:appene:v:183:y:2016:i:c:p:737-745
    DOI: 10.1016/j.apenergy.2016.08.164
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916312739
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.08.164?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gitizadeh, Mohsen & Kaji, Mahdi & Aghaei, Jamshid, 2013. "Risk based multiobjective generation expansion planning considering renewable energy sources," Energy, Elsevier, vol. 50(C), pages 74-82.
    2. Hobbs, Benjamin F., 1995. "Optimization methods for electric utility resource planning," European Journal of Operational Research, Elsevier, vol. 83(1), pages 1-20, May.
    3. Holger Heitsch & Werner Römisch, 2009. "Scenario tree reduction for multistage stochastic programs," Computational Management Science, Springer, vol. 6(2), pages 117-133, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Backe, Stian & Ahang, Mohammadreza & Tomasgard, Asgeir, 2021. "Stable stochastic capacity expansion with variable renewables: Comparing moment matching and stratified scenario generation sampling," Applied Energy, Elsevier, vol. 302(C).
    2. Pilpola, Sannamari & Lund, Peter D., 2020. "Analyzing the effects of uncertainties on the modelling of low-carbon energy system pathways," Energy, Elsevier, vol. 201(C).
    3. Fitiwi, Desta & Lynch, Muireann Á. & Bertsch, Valentin, 2019. "Optimal development of electricity generation mix considering fossil fuel phase-out and strategic multi-area interconnection," Papers WP616, Economic and Social Research Institute (ESRI).
    4. Nie, S. & Huang, Z.C. & Huang, G.H. & Yu, L. & Liu, J., 2018. "Optimization of electric power systems with cost minimization and environmental-impact mitigation under multiple uncertainties," Applied Energy, Elsevier, vol. 221(C), pages 249-267.
    5. Flores-Quiroz, Angela & Strunz, Kai, 2021. "A distributed computing framework for multi-stage stochastic planning of renewable power systems with energy storage as flexibility option," Applied Energy, Elsevier, vol. 291(C).
    6. Nguyen, Hieu T. & Felder, Frank A., 2020. "Generation expansion planning with renewable energy credit markets: A bilevel programming approach," Applied Energy, Elsevier, vol. 276(C).
    7. Quiroga, Daniela & Sauma, Enzo & Pozo, David, 2019. "Power system expansion planning under global and local emission mitigation policies," Applied Energy, Elsevier, vol. 239(C), pages 1250-1264.
    8. Rego, Erik Eduardo & Costa, Oswaldo L.V. & Ribeiro, Celma de Oliveira & Lima Filho, Roberto Ivo da R. & Takada, Hellinton & Stern, Julio, 2020. "The trade-off between demand growth and renewables: A multiperiod electricity planning model under CO2 emission constraints," Energy, Elsevier, vol. 213(C).
    9. Zeinolabedin Sadeghi & Yahya Hatami & Seyed Abdolmajid Jalaei & Amir Abdollahi, 2020. "Generation capacity expansion economic-environmental planning under uncertainty of demand and supply," Environment Systems and Decisions, Springer, vol. 40(4), pages 544-559, December.
    10. Chen, Yixuan & Qu, Kaiping & Pan, Zhenning & Yu, Tao, 2020. "Multi-objective electricity-gas flow with stochastic dispersion control for air pollutants using two-stage Pareto optimization," Applied Energy, Elsevier, vol. 279(C).
    11. Tong Koecklin, Manuel & Fitiwi, Desta & de Carolis, Joseph F. & Curtis, John, 2020. "Renewable electricity generation and transmission network developments in light of public opposition: Insights from Ireland," Papers WP653, Economic and Social Research Institute (ESRI).
    12. Chi Kong Chyong & Carmen Li & David Reiner & Fabien Roques, 2020. "A Portfolio approach to wind and solar deployment in Australia," Working Papers EPRG2022, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    13. Radhanon Diewvilai & Kulyos Audomvongseree, 2021. "Generation Expansion Planning with Energy Storage Systems Considering Renewable Energy Generation Profiles and Full-Year Hourly Power Balance Constraints," Energies, MDPI, vol. 14(18), pages 1-25, September.
    14. Yu, L. & Li, Y.P. & Huang, G.H. & Fan, Y.R. & Nie, S., 2018. "A copula-based flexible-stochastic programming method for planning regional energy system under multiple uncertainties: A case study of the urban agglomeration of Beijing and Tianjin," Applied Energy, Elsevier, vol. 210(C), pages 60-74.
    15. Dagoumas, Athanasios S. & Koltsaklis, Nikolaos E., 2019. "Review of models for integrating renewable energy in the generation expansion planning," Applied Energy, Elsevier, vol. 242(C), pages 1573-1587.
    16. Li, Wei & Lu, Can & Zhang, Yan-Wu, 2019. "Prospective exploration of future renewable portfolio standard schemes in China via a multi-sector CGE model," Energy Policy, Elsevier, vol. 128(C), pages 45-56.
    17. Fitiwi, Desta Z. & Lynch, Muireann & Bertsch, Valentin, 2020. "Enhanced network effects and stochastic modelling in generation expansion planning: Insights from an insular power system," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    18. Jin, Hongyang & Li, Zhengshuo & Sun, Hongbin & Guo, Qinglai & Chen, Runze & Wang, Bin, 2017. "A robust aggregate model and the two-stage solution method to incorporate energy intensive enterprises in power system unit commitment," Applied Energy, Elsevier, vol. 206(C), pages 1364-1378.
    19. Pereira, Andrés & Sauma, Enzo, 2020. "Power systems expansion planning with time-varying CO2 tax," Energy Policy, Elsevier, vol. 144(C).
    20. Zhou, Xianyang & Zhou, Dequn & Ding, Hao & Zhao, Siqi & Wang, Qunwei, 2023. "Low-carbon transition of China's provincial power sector under renewable portfolio standards and carbon cap," Energy, Elsevier, vol. 283(C).
    21. Scott, Ian J. & Botterud, Audun & Carvalho, Pedro M.S. & Silva, Carlos A. Santos, 2020. "Renewable energy support policy evaluation: The role of long-term uncertainty in market modelling," Applied Energy, Elsevier, vol. 278(C).
    22. Pereira, Sérgio & Ferreira, Paula & Vaz, A.I.F., 2017. "Generation expansion planning with high share of renewables of variable output," Applied Energy, Elsevier, vol. 190(C), pages 1275-1288.
    23. Lei, Yang & Wang, Dan & Jia, Hongjie & Chen, Jingcheng & Li, Jingru & Song, Yi & Li, Jiaxi, 2020. "Multi-objective stochastic expansion planning based on multi-dimensional correlation scenario generation method for regional integrated energy system integrated renewable energy," Applied Energy, Elsevier, vol. 276(C).
    24. Wang, Delu & Li, Chunxiao & Mao, Jinqi & Yang, Qing, 2023. "What affects the implementation of the renewable portfolio standard? An analysis of the four-party evolutionary game," Renewable Energy, Elsevier, vol. 204(C), pages 250-261.
    25. Yu, L. & Li, Y.P. & Huang, G.H. & Fan, Y.R. & Yin, S., 2018. "Planning regional-scale electric power systems under uncertainty: A case study of Jing-Jin-Ji region, China," Applied Energy, Elsevier, vol. 212(C), pages 834-849.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "State-of-the-art generation expansion planning: A review," Applied Energy, Elsevier, vol. 230(C), pages 563-589.
    2. Sadeghi, Hadi & Rashidinejad, Masoud & Abdollahi, Amir, 2017. "A comprehensive sequential review study through the generation expansion planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1369-1394.
    3. Oree, Vishwamitra & Sayed Hassen, Sayed Z. & Fleming, Peter J., 2017. "Generation expansion planning optimisation with renewable energy integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 790-803.
    4. Hong, Zitao & Peng, Zhen & Zhang, Liumei, 2022. "Game analysis on the choice of emission trading among industrial enterprises driven by data," Energy, Elsevier, vol. 239(PE).
    5. Reza Nadimi & Masahito Takahashi & Koji Tokimatsu & Mika Goto, 2024. "The Reliability and Profitability of Virtual Power Plant with Short-Term Power Market Trading and Non-Spinning Reserve Diesel Generator," Energies, MDPI, vol. 17(9), pages 1-19, April.
    6. Pineau, Pierre-Olivier & Rasata, Hasina & Zaccour, Georges, 2011. "Impact of some parameters on investments in oligopolistic electricity markets," European Journal of Operational Research, Elsevier, vol. 213(1), pages 180-195, August.
    7. Ramírez-Sagner, Gonzalo & Muñoz, Francisco D., 2019. "The effect of head-sensitive hydropower approximations on investments and operations in planning models for policy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 38-47.
    8. Inzunza, Andrés & Muñoz, Francisco D. & Moreno, Rodrigo, 2021. "Measuring the effects of environmental policies on electricity markets risk," Energy Economics, Elsevier, vol. 102(C).
    9. Hach, Daniel & Chyong, Chi Kong & Spinler, Stefan, 2016. "Capacity market design options: A dynamic capacity investment model and a GB case study," European Journal of Operational Research, Elsevier, vol. 249(2), pages 691-705.
    10. Woo, C.K. & Liu, Y. & Zarnikau, J. & Shiu, A. & Luo, X. & Kahrl, F., 2018. "Price elasticities of retail energy demands in the United States: New evidence from a panel of monthly data for 2001–2016," Applied Energy, Elsevier, vol. 222(C), pages 460-474.
    11. Pereira, Sérgio & Ferreira, Paula & Vaz, A.I.F., 2014. "Short-term electricity planning with increase wind capacity," Energy, Elsevier, vol. 69(C), pages 12-22.
    12. Xiangyu Kong & Jingtao Yao & Zhijun E & Xin Wang, 2019. "Generation Expansion Planning Based on Dynamic Bayesian Network Considering the Uncertainty of Renewable Energy Resources," Energies, MDPI, vol. 12(13), pages 1-20, June.
    13. Spiegel, Alisa & Severini, Simone & Britz, Wolfgang & Coletta, Attilio, 2020. "Step-by-step development of a model simulating returns on farm from investments: the example of hazelnut plantation in Italy: The example of hazelnut plantation in Italy," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 9(1), April.
    14. Kjetil Haugen & Stein Wallace, 2006. "Stochastic programming: Potential hazards when random variables reflect market interaction," Annals of Operations Research, Springer, vol. 142(1), pages 119-127, February.
    15. Chen, Hao & Tang, Bao-Jun & Liao, Hua & Wei, Yi-Ming, 2016. "A multi-period power generation planning model incorporating the non-carbon external costs: A case study of China," Applied Energy, Elsevier, vol. 183(C), pages 1333-1345.
    16. Oree, Vishwamitra & Sayed Hassen, Sayed Z. & Fleming, Peter J., 2019. "A multi-objective framework for long-term generation expansion planning with variable renewables," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    17. Xiangyu Kong & Siqiong Zhang & Bowei Sun & Qun Yang & Shupeng Li & Shijian Zhu, 2020. "Research on Home Energy Management Method for Demand Response Based on Chance-Constrained Programming," Energies, MDPI, vol. 13(11), pages 1-27, June.
    18. Dranka, Géremi Gilson & Ferreira, Paula & Vaz, A. Ismael F., 2020. "Cost-effectiveness of energy efficiency investments for high renewable electricity systems," Energy, Elsevier, vol. 198(C).
    19. Martin Glanzer & Georg Ch. Pflug, 2020. "Multiscale stochastic optimization: modeling aspects and scenario generation," Computational Optimization and Applications, Springer, vol. 75(1), pages 1-34, January.
    20. Dylan F. Jones & Graham Wall, 2016. "An extended goal programming model for site selection in the offshore wind farm sector," Annals of Operations Research, Springer, vol. 245(1), pages 121-135, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:183:y:2016:i:c:p:737-745. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.