IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v74y2014icp494-505.html
   My bibliography  Save this article

Optimization of peak loads among multiple provincial power grids under a central dispatching authority

Author

Listed:
  • Shen, Jianjian
  • Cheng, Chuntian
  • Wu, Xinyu
  • Cheng, Xiong
  • Li, Weidong
  • Lu, Jianyu

Abstract

There is a lack of the capacity to respond to peak loads in most provincial power grids of eastern China and coastal regions. A CDA (central dispatching authority), which is usually a regional power grid, is responsible to dispatch its own plants and allocate power generation to multiple subordinate provincial power grids for responding to their peak loads simultaneously. Hence, this paper develops an optimization model to determine the quarter-hourly generation schedules allocated for provincial power grids under a CDA. To meet the need for peak shaving, the selected objective function in the model requires minimization of the variance of remaining load that is obtained by subtracting power generation from the original load of each provincial power grid. The objectives of multiple power grids are first reduced to an equivalent scalar objective through the weighted sum method. The general quadratic and linear formulations applying to the conventional plants and pumped-storage plants are developed to respectively deal with complex composite objective and spatial-temporal coupling constraints such as multilateral electricity contracts constraints and load balance constraints. The resulting problem is finally solved via the convex quadratic optimization technique. The proposed method is applied to scheduling plants owned by the East China Grid which covers five provinces. The simulations show that the method can rationally coordinate electric power among provinces to meet different peak demands. The comparison with the conventional method further demonstrates the advantages of our method.

Suggested Citation

  • Shen, Jianjian & Cheng, Chuntian & Wu, Xinyu & Cheng, Xiong & Li, Weidong & Lu, Jianyu, 2014. "Optimization of peak loads among multiple provincial power grids under a central dispatching authority," Energy, Elsevier, vol. 74(C), pages 494-505.
  • Handle: RePEc:eee:energy:v:74:y:2014:i:c:p:494-505
    DOI: 10.1016/j.energy.2014.07.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214008378
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.07.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Narang, Nitin & Dhillon, J.S. & Kothari, D.P., 2012. "Multiobjective fixed head hydrothermal scheduling using integrated predator-prey optimization and Powell search method," Energy, Elsevier, vol. 47(1), pages 237-252.
    2. Wang, Yongqiang & Zhou, Jianzhong & Mo, Li & Zhang, Rui & Zhang, Yongchuan, 2012. "Short-term hydrothermal generation scheduling using differential real-coded quantum-inspired evolutionary algorithm," Energy, Elsevier, vol. 44(1), pages 657-671.
    3. Lin, Boqiang & Wu, Ya & Zhang, Li, 2012. "Electricity saving potential of the power generation industry in China," Energy, Elsevier, vol. 40(1), pages 307-316.
    4. Nazari, M.E. & Ardehali, M.M. & Jafari, S., 2010. "Pumped-storage unit commitment with considerations for energy demand, economics, and environmental constraints," Energy, Elsevier, vol. 35(10), pages 4092-4101.
    5. Zhuan, Xiangtao & Xia, Xiaohua, 2013. "Optimal operation scheduling of a pumping station with multiple pumps," Applied Energy, Elsevier, vol. 104(C), pages 250-257.
    6. Sivasubramani, S. & Swarup, K.S., 2010. "Hybrid SOA–SQP algorithm for dynamic economic dispatch with valve-point effects," Energy, Elsevier, vol. 35(12), pages 5031-5036.
    7. Zhang, Na & Lior, Noam & Jin, Hongguang, 2011. "The energy situation and its sustainable development strategy in China," Energy, Elsevier, vol. 36(6), pages 3639-3649.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiang Wang & Le Guo & Jianjian Shen & Meiyan Kong & Xu Han, 2023. "Issues and Strategies for the Dispatching and Trading of the Three Gorges Large Hydropower System," Energies, MDPI, vol. 16(18), pages 1-16, September.
    2. Wu, Xiaohua & Hu, Xiaosong & Yin, Xiaofeng & Zhang, Caiping & Qian, Shide, 2017. "Optimal battery sizing of smart home via convex programming," Energy, Elsevier, vol. 140(P1), pages 444-453.
    3. Feng, Zhong-kai & Niu, Wen-jing & Wang, Wen-chuan & Zhou, Jian-zhong & Cheng, Chun-tian, 2019. "A mixed integer linear programming model for unit commitment of thermal plants with peak shaving operation aspect in regional power grid lack of flexible hydropower energy," Energy, Elsevier, vol. 175(C), pages 618-629.
    4. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian & Zhou, Jian-zhong, 2017. "Peak shaving operation of hydro-thermal-nuclear plants serving multiple power grids by linear programming," Energy, Elsevier, vol. 135(C), pages 210-219.
    5. Zhang, Juntao & Cheng, Chuntian & Yu, Shen & Wu, Huijun & Gao, Mengping, 2021. "Sharing hydropower flexibility in interconnected power systems: A case study for the China Southern power grid," Applied Energy, Elsevier, vol. 288(C).
    6. Cheng, Chuntian & Su, Chengguo & Wang, Peilin & Shen, Jianjian & Lu, Jianyu & Wu, Xinyu, 2018. "An MILP-based model for short-term peak shaving operation of pumped-storage hydropower plants serving multiple power grids," Energy, Elsevier, vol. 163(C), pages 722-733.
    7. Ahmadianfar, Iman & Kheyrandish, Ali & Jamei, Mehdi & Gharabaghi, Bahram, 2021. "Optimizing operating rules for multi-reservoir hydropower generation systems: An adaptive hybrid differential evolution algorithm," Renewable Energy, Elsevier, vol. 167(C), pages 774-790.
    8. Zare Oskouei, Morteza & Sadeghi Yazdankhah, Ahmad, 2017. "The role of coordinated load shifting and frequency-based pricing strategies in maximizing hybrid system profit," Energy, Elsevier, vol. 135(C), pages 370-381.
    9. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Li, Gang & Liu, Lingjun, 2022. "Impacts of different wind and solar power penetrations on cascade hydroplants operation," Renewable Energy, Elsevier, vol. 182(C), pages 227-244.
    10. Wang, Xuebin & Chang, Jianxia & Meng, Xuejiao & Wang, Yimin, 2018. "Short-term hydro-thermal-wind-photovoltaic complementary operation of interconnected power systems," Applied Energy, Elsevier, vol. 229(C), pages 945-962.
    11. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Jurasz, Jakub & Zhang, Yi & Lu, Jia, 2023. "Exploring the transition role of cascade hydropower in 100% decarbonized energy systems," Energy, Elsevier, vol. 279(C).
    12. Wang, Zizhao & Wu, Feng & Li, Yang & Shi, Linjun & Lee, Kwang Y. & Wu, Jiawei, 2023. "Itô-theory-based multi-time scale dispatch approach for cascade hydropower-photovoltaic complementary system," Renewable Energy, Elsevier, vol. 202(C), pages 127-142.
    13. Safamehr, Hossein & Rahimi-Kian, Ashkan, 2015. "A cost-efficient and reliable energy management of a micro-grid using intelligent demand-response program," Energy, Elsevier, vol. 91(C), pages 283-293.
    14. Wang, Peilin & Yuan, Wenlin & Su, Chengguo & Wu, Yang & Lu, Lu & Yan, Denghua & Wu, Zening, 2022. "Short-term optimal scheduling of cascade hydropower plants shaving peak load for multiple power grids," Renewable Energy, Elsevier, vol. 184(C), pages 68-79.
    15. Gu, Yujiong & Xu, Jing & Chen, Dongchao & Wang, Zhong & Li, Qianqian, 2016. "Overall review of peak shaving for coal-fired power units in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 723-731.
    16. Kim, Icksung & Kim, Woohyun, 2023. "Application of market-based control with thermal energy storage system for demand limiting and real-time pricing control," Energy, Elsevier, vol. 263(PA).
    17. Zhou, Xinlei & Xue, Shan & Du, Han & Ma, Zhenjun, 2023. "Optimization of building demand flexibility using reinforcement learning and rule-based expert systems," Applied Energy, Elsevier, vol. 350(C).
    18. Jianjian Shen & Xiufei Zhang & Jian Wang & Rui Cao & Sen Wang & Jun Zhang, 2019. "Optimal Operation of Interprovincial Hydropower System Including Xiluodu and Local Plants in Multiple Recipient Regions," Energies, MDPI, vol. 12(1), pages 1-19, January.
    19. Liao, Shengli & Liu, Zhanwei & Liu, Benxi & Cheng, Chuntian & Wu, Xinyu & Zhao, Zhipeng, 2021. "Daily peak shaving operation of cascade hydropower stations with sensitive hydraulic connections considering water delay time," Renewable Energy, Elsevier, vol. 169(C), pages 970-981.
    20. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian & Liao, Sheng-li, 2017. "Hydropower system operation optimization by discrete differential dynamic programming based on orthogonal experiment design," Energy, Elsevier, vol. 126(C), pages 720-732.
    21. Niu, Wen-jing & Feng, Zhong-kai & Cheng, Chun-tian, 2018. "Optimization of variable-head hydropower system operation considering power shortage aspect with quadratic programming and successive approximation," Energy, Elsevier, vol. 143(C), pages 1020-1028.
    22. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian & Wu, Xin-yu, 2017. "Optimization of hydropower system operation by uniform dynamic programming for dimensionality reduction," Energy, Elsevier, vol. 134(C), pages 718-730.
    23. Shen, Jianjian & Cheng, Chuntian & Wang, Sen & Yuan, Xiaoye & Sun, Lifei & Zhang, Jun, 2020. "Multiobjective optimal operations for an interprovincial hydropower system considering peak-shaving demands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    24. Yu, L. & Li, Y.P. & Huang, G.H. & Fan, Y.R. & Yin, S., 2018. "Planning regional-scale electric power systems under uncertainty: A case study of Jing-Jin-Ji region, China," Applied Energy, Elsevier, vol. 212(C), pages 834-849.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Jianjian & Cheng, Chuntian & Cheng, Xiong & Lund, Jay R., 2016. "Coordinated operations of large-scale UHVDC hydropower and conventional hydro energies about regional power grid," Energy, Elsevier, vol. 95(C), pages 433-446.
    2. Glotić, Arnel & Glotić, Adnan & Kitak, Peter & Pihler, Jože & Tičar, Igor, 2014. "Optimization of hydro energy storage plants by using differential evolution algorithm," Energy, Elsevier, vol. 77(C), pages 97-107.
    3. Santhosh, Apoorva & Farid, Amro M. & Youcef-Toumi, Kamal, 2014. "The impact of storage facility capacity and ramping capabilities on the supply side economic dispatch of the energy–water nexus," Energy, Elsevier, vol. 66(C), pages 363-377.
    4. Hickman, William & Muzhikyan, Aramazd & Farid, Amro M., 2017. "The synergistic role of renewable energy integration into the unit commitment of the energy water nexus," Renewable Energy, Elsevier, vol. 108(C), pages 220-229.
    5. Wang, Yongqiang & Zhou, Jianzhong & Mo, Li & Zhang, Rui & Zhang, Yongchuan, 2012. "Short-term hydrothermal generation scheduling using differential real-coded quantum-inspired evolutionary algorithm," Energy, Elsevier, vol. 44(1), pages 657-671.
    6. Soroudi, Alireza, 2013. "Robust optimization based self scheduling of hydro-thermal Genco in smart grids," Energy, Elsevier, vol. 61(C), pages 262-271.
    7. Moradi, Saeed & Khanmohammadi, Sohrab & Hagh, Mehrdad Tarafdar & Mohammadi-ivatloo, Behnam, 2015. "A semi-analytical non-iterative primary approach based on priority list to solve unit commitment problem," Energy, Elsevier, vol. 88(C), pages 244-259.
    8. Pérez-Díaz, Juan I. & Jiménez, Javier, 2016. "Contribution of a pumped-storage hydropower plant to reduce the scheduling costs of an isolated power system with high wind power penetration," Energy, Elsevier, vol. 109(C), pages 92-104.
    9. Santhosh, Apoorva & Farid, Amro M. & Youcef-Toumi, Kamal, 2014. "Real-time economic dispatch for the supply side of the energy-water nexus," Applied Energy, Elsevier, vol. 122(C), pages 42-52.
    10. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian, 2017. "Multi-objective quantum-behaved particle swarm optimization for economic environmental hydrothermal energy system scheduling," Energy, Elsevier, vol. 131(C), pages 165-178.
    11. Zhang, Jingrui & Lin, Shuang & Liu, Houde & Chen, Yalin & Zhu, Mingcheng & Xu, Yinliang, 2017. "A small-population based parallel differential evolution algorithm for short-term hydrothermal scheduling problem considering power flow constraints," Energy, Elsevier, vol. 123(C), pages 538-554.
    12. Nazari-Heris, M. & Mohammadi-Ivatloo, B. & B. Gharehpetian, G., 2017. "Short-term scheduling of hydro-based power plants considering application of heuristic algorithms: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 116-129.
    13. Xu, Li-jun & Fan, Xiao-chao & Wang, Wei-qing & Xu, Lei & Duan, You-lian & Shi, Rui-jing, 2017. "Renewable and sustainable energy of Xinjiang and development strategy of node areas in the “Silk Road Economic Belt”," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 274-285.
    14. Kaivo-oja, J. & Luukkanen, J. & Panula-Ontto, J. & Vehmas, J. & Chen, Y. & Mikkonen, S. & Auffermann, B., 2014. "Are structural change and modernisation leading to convergence in the CO2 economy? Decomposition analysis of China, EU and USA," Energy, Elsevier, vol. 72(C), pages 115-125.
    15. Wang, Lixiao & Jing, Z.X. & Zheng, J.H. & Wu, Q.H. & Wei, Feng, 2018. "Decentralized optimization of coordinated electrical and thermal generations in hierarchical integrated energy systems considering competitive individuals," Energy, Elsevier, vol. 158(C), pages 607-622.
    16. Lou, Bo & Ulgiati, Sergio, 2013. "Identifying the environmental support and constraints to the Chinese economic growth—An application of the Emergy Accounting method," Energy Policy, Elsevier, vol. 55(C), pages 217-233.
    17. Valentine, Scott Victor, 2014. "The socio-political economy of electricity generation in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 416-429.
    18. Youngho CHANG & Yanfei LI, 2014. "Non-renewable Resources in Asian Economies: Perspective of Availability, Applicability Acceptability, and Affordability," Working Papers DP-2014-04, Economic Research Institute for ASEAN and East Asia (ERIA).
    19. Pejman Bahramian, 2021. "Integration of wind power into an electricity system using pumped-storage: Economic challenges and stakeholder impacts," Working Paper 1480, Economics Department, Queen's University.
    20. Kagiri, Charles & Wanjiru, Evan M. & Zhang, Lijun & Xia, Xiaohua, 2018. "Optimized response to electricity time-of-use tariff of a compressed natural gas fuelling station," Applied Energy, Elsevier, vol. 222(C), pages 244-256.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:74:y:2014:i:c:p:494-505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.