IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v253y2019ic52.html
   My bibliography  Save this article

Uncertainties towards a fossil-free system with high integration of wind energy in long-term planning

Author

Listed:
  • Pizarro-Alonso, Amalia
  • Ravn, Hans
  • Münster, Marie

Abstract

There is a large amount of parametric uncertainties that might affect long-term energy planning, due to the inherent variability connected to the future. Most of these uncertainties are stochastic, i.e. they cannot be reduced, but can be better characterized. In an attempt to address this issue, studies often explore different alternative scenarios or perform local sensitivity analyses. While acknowledging their importance, it is evident that their traditional scope must be rethought, as those methods cannot consider interactions among parameters and hence might omit parameters that are highly influential. This study aims to explore the whole uncertainty range in order to identify the most critical parameters towards fossil-free energy systems with high integration of wind-based electricity. Denmark is used as a case study of a country with large wind resources, which are increasingly exploited. It pursues three steps: (1) selection of parameters and characterization of their uncertainties, (2) global sensitivity analyses through Morris sampling, and (3) uncertainty propagation and Monte Carlo runs using Latin Hypercube sampling. Offshore wind upscaling will depend on technological improvements related to capital costs or efficiencies as well as on the system integration constraints. Hence, increasing deployments of offshore wind would require policies that foster technological learning, while promoting the cost-efficient integration of an increase in participation in the power mix, such as grid transmission expansion. Therefore, methods that deal with the whole uncertainty space should, to a larger extent, be implemented when uncertainties are assessed in association with long-term planning of systems with high integration of fluctuating renewable energy.

Suggested Citation

  • Pizarro-Alonso, Amalia & Ravn, Hans & Münster, Marie, 2019. "Uncertainties towards a fossil-free system with high integration of wind energy in long-term planning," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
  • Handle: RePEc:eee:appene:v:253:y:2019:i:c:52
    DOI: 10.1016/j.apenergy.2019.113528
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919312024
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113528?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, F. & Huang, G.H. & Fan, Y.R. & Chen, J.P., 2017. "A copula-based fuzzy chance-constrained programming model and its application to electric power generation systems planning," Applied Energy, Elsevier, vol. 187(C), pages 291-309.
    2. Ioannou, Anastasia & Angus, Andrew & Brennan, Feargal, 2017. "Risk-based methods for sustainable energy system planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 602-615.
    3. Bosetti, Valentina & Marangoni, Giacomo & Borgonovo, Emanuele & Diaz Anadon, Laura & Barron, Robert & McJeon, Haewon C. & Politis, Savvas & Friley, Paul, 2015. "Sensitivity to energy technology costs: A multi-model comparison analysis," Energy Policy, Elsevier, vol. 80(C), pages 244-263.
    4. Richard L. Revesz & Peter H. Howard & Kenneth Arrow & Lawrence H. Goulder & Robert E. Kopp & Michael A. Livermore & Michael Oppenheimer & Thomas Sterner, 2014. "Global warming: Improve economic models of climate change," Nature, Nature, vol. 508(7495), pages 173-175, April.
    5. Önkal, Dilek & Sayım, Kadire Zeynep & Gönül, Mustafa Sinan, 2013. "Scenarios as channels of forecast advice," Technological Forecasting and Social Change, Elsevier, vol. 80(4), pages 772-788.
    6. Usher, Will & Strachan, Neil, 2012. "Critical mid-term uncertainties in long-term decarbonisation pathways," Energy Policy, Elsevier, vol. 41(C), pages 433-444.
    7. Scholz, Yvonne & Gils, Hans Christian & Pietzcker, Robert C., 2017. "Application of a high-detail energy system model to derive power sector characteristics at high wind and solar shares," Energy Economics, Elsevier, vol. 64(C), pages 568-582.
    8. Bohringer, Christoph, 1998. "The synthesis of bottom-up and top-down in energy policy modeling," Energy Economics, Elsevier, vol. 20(3), pages 233-248, June.
    9. Evelina Trutnevyte & Céline Guivarch & Robert Lempert & Neil Strachan, 2016. "Reinvigorating the scenario technique to expand uncertainty consideration," Climatic Change, Springer, vol. 135(3), pages 373-379, April.
    10. Jean-Charles Hourcade, Mark Jaccard, Chris Bataille, and Frederic Ghersi, 2006. "Hybrid Modeling: New Answers to Old Challenges Introduction to the Special Issue of The Energy Journal," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 1-12.
    11. Nie, S. & Huang, Z.C. & Huang, G.H. & Yu, L. & Liu, J., 2018. "Optimization of electric power systems with cost minimization and environmental-impact mitigation under multiple uncertainties," Applied Energy, Elsevier, vol. 221(C), pages 249-267.
    12. Frédéric Branger & Louis-Gaëtan Giraudet & Céline Guivarch & Philippe Quirion, 2015. "Global sensitivity analysis of an energy-economy model of the residential building sector," Working Papers 2015.06, FAERE - French Association of Environmental and Resource Economists.
    13. Pye, Steve & Sabio, Nagore & Strachan, Neil, 2015. "An integrated systematic analysis of uncertainties in UK energy transition pathways," Energy Policy, Elsevier, vol. 87(C), pages 673-684.
    14. Helton, J.C. & Johnson, J.D. & Sallaberry, C.J. & Storlie, C.B., 2006. "Survey of sampling-based methods for uncertainty and sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1175-1209.
    15. Hall, Lisa M.H. & Buckley, Alastair R., 2016. "A review of energy systems models in the UK: Prevalent usage and categorisation," Applied Energy, Elsevier, vol. 169(C), pages 607-628.
    16. Fortes, Patrícia & Alvarenga, António & Seixas, Júlia & Rodrigues, Sofia, 2015. "Long-term energy scenarios: Bridging the gap between socio-economic storylines and energy modeling," Technological Forecasting and Social Change, Elsevier, vol. 91(C), pages 161-178.
    17. Maurizio Gargiulo & Brian Ó Gallachóir, 2013. "Long-term energy models: Principles, characteristics, focus, and limitations," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 2(2), pages 158-177, March.
    18. Pfenninger, Stefan & Staffell, Iain, 2016. "Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data," Energy, Elsevier, vol. 114(C), pages 1251-1265.
    19. Pietzcker, Robert C. & Ueckerdt, Falko & Carrara, Samuel & de Boer, Harmen Sytze & Després, Jacques & Fujimori, Shinichiro & Johnson, Nils & Kitous, Alban & Scholz, Yvonne & Sullivan, Patrick & Ludere, 2017. "System integration of wind and solar power in integrated assessment models: A cross-model evaluation of new approaches," Energy Economics, Elsevier, vol. 64(C), pages 583-599.
    20. Andy Stirling, 2010. "Keep it complex," Nature, Nature, vol. 468(7327), pages 1029-1031, December.
    21. Jean Charles Hourcade & Mark Jaccard & Chris Bataille & Frédéric Ghersi, 2006. "Hybrid Modeling: New Answers to Old Challenges," Post-Print halshs-00471234, HAL.
    22. Yu, L. & Li, Y.P. & Huang, G.H. & Fan, Y.R. & Nie, S., 2018. "A copula-based flexible-stochastic programming method for planning regional energy system under multiple uncertainties: A case study of the urban agglomeration of Beijing and Tianjin," Applied Energy, Elsevier, vol. 210(C), pages 60-74.
    23. Lunz, Benedikt & Stöcker, Philipp & Eckstein, Sascha & Nebel, Arjuna & Samadi, Sascha & Erlach, Berit & Fischedick, Manfred & Elsner, Peter & Sauer, Dirk Uwe, 2016. "Scenario-based comparative assessment of potential future electricity systems – A new methodological approach using Germany in 2050 as an example," Applied Energy, Elsevier, vol. 171(C), pages 555-580.
    24. Moradi, Mohammad H. & Hajinazari, Mehdi & Jamasb, Shahriar & Paripour, Mahmoud, 2013. "An energy management system (EMS) strategy for combined heat and power (CHP) systems based on a hybrid optimization method employing fuzzy programming," Energy, Elsevier, vol. 49(C), pages 86-101.
    25. Marcucci, Adriana & Panos, Evangelos & Kypreos, Socrates & Fragkos, Panagiotis, 2019. "Probabilistic assessment of realizing the 1.5 °C climate target," Applied Energy, Elsevier, vol. 239(C), pages 239-251.
    26. Mirakyan, Atom & De Guio, Roland, 2015. "Modelling and uncertainties in integrated energy planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 62-69.
    27. Muela, E. & Schweickardt, G. & Garces, F., 2007. "Fuzzy possibilistic model for medium-term power generation planning with environmental criteria," Energy Policy, Elsevier, vol. 35(11), pages 5643-5655, November.
    28. Soroudi, Alireza & Amraee, Turaj, 2013. "Decision making under uncertainty in energy systems: State of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 376-384.
    29. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    30. Moret, Stefano & Codina Gironès, Víctor & Bierlaire, Michel & Maréchal, François, 2017. "Characterization of input uncertainties in strategic energy planning models," Applied Energy, Elsevier, vol. 202(C), pages 597-617.
    31. John Bistline & John Weyant, 2013. "Electric sector investments under technological and policy-related uncertainties: a stochastic programming approach," Climatic Change, Springer, vol. 121(2), pages 143-160, November.
    32. Rentschler, Jun E., 2013. "Oil price volatility, economic growth and the hedging role of renewable energy," Policy Research Working Paper Series 6603, The World Bank.
    33. Venturini, Giada & Pizarro-Alonso, Amalia & Münster, Marie, 2019. "How to maximise the value of residual biomass resources: The case of straw in Denmark," Applied Energy, Elsevier, vol. 250(C), pages 369-388.
    34. Felix Creutzig & Peter Agoston & Jan Christoph Goldschmidt & Gunnar Luderer & Gregory Nemet & Robert C. Pietzcker, 2017. "The underestimated potential of solar energy to mitigate climate change," Nature Energy, Nature, vol. 2(9), pages 1-9, September.
    35. Frauke Wiese & Gesine Bökenkamp & Clemens Wingenbach & Olav Hohmeyer, 2014. "An open source energy system simulation model as an instrument for public participation in the development of strategies for a sustainable future," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(5), pages 490-504, September.
    36. Keppo, Ilkka & Strubegger, Manfred, 2010. "Short term decisions for long term problems – The effect of foresight on model based energy systems analysis," Energy, Elsevier, vol. 35(5), pages 2033-2042.
    37. Barragán-Beaud, Camila & Pizarro-Alonso, Amalia & Xylia, Maria & Syri, Sanna & Silveira, Semida, 2018. "Carbon tax or emissions trading? An analysis of economic and political feasibility of policy mechanisms for greenhouse gas emissions reduction in the Mexican power sector," Energy Policy, Elsevier, vol. 122(C), pages 287-299.
    38. Borgonovo, Emanuele & Plischke, Elmar, 2016. "Sensitivity analysis: A review of recent advances," European Journal of Operational Research, Elsevier, vol. 248(3), pages 869-887.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Pei-Hao & Pye, Steve & Keppo, Ilkka, 2020. "Using clustering algorithms to characterise uncertain long-term decarbonisation pathways," Applied Energy, Elsevier, vol. 268(C).
    2. Bjarnhedinn Gudlaugsson & Dana Abi Ghanem & Huda Dawood & Gobind Pillai & Michael Short, 2022. "A Qualitative Based Causal-Loop Diagram for Understanding Policy Design Challenges for a Sustainable Transition Pathway: The Case of Tees Valley Region, UK," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
    3. Nolan, Tahlia, 2024. "Is pivoting offshore the right policy for achieving decarbonisation in the state of Victoria, Australia's electricity sector?," Energy Policy, Elsevier, vol. 190(C).
    4. Stefan N. Petrović & Oleksandr Diachuk & Roman Podolets & Andrii Semeniuk & Fabian Bühler & Rune Grandal & Mourad Boucenna & Olexandr Balyk, 2021. "Exploring the Long-Term Development of the Ukrainian Energy System," Energies, MDPI, vol. 14(22), pages 1-20, November.
    5. Jordan, Matthias & Millinger, Markus & Thrän, Daniela, 2020. "Robust bioenergy technologies for the German heat transition: A novel approach combining optimization modeling with Sobol’ sensitivity analysis," Applied Energy, Elsevier, vol. 262(C).
    6. Wang, Yun & Chen, Tuo & Zou, Runmin & Song, Dongran & Zhang, Fan & Zhang, Lingjun, 2022. "Ensemble probabilistic wind power forecasting with multi-scale features," Renewable Energy, Elsevier, vol. 201(P1), pages 734-751.
    7. Àlex Alonso-Travesset & Diederik Coppitters & Helena Martín & Jordi de la Hoz, 2023. "Economic and Regulatory Uncertainty in Renewable Energy System Design: A Review," Energies, MDPI, vol. 16(2), pages 1-30, January.
    8. Wang, Jing & Kang, Lixia & Huang, Xiankun & Liu, Yongzhong, 2021. "An analysis framework for quantitative evaluation of parametric uncertainty in a cooperated energy storage system with multiple energy carriers," Energy, Elsevier, vol. 226(C).
    9. Jåstad, Eirik Ogner & Trotter, Ian M. & Bolkesjø, Torjus Folsland, 2022. "Long term power prices and renewable energy market values in Norway – A probabilistic approach," Energy Economics, Elsevier, vol. 112(C).
    10. Bramstoft, Rasmus & Pizarro-Alonso, Amalia & Jensen, Ida Græsted & Ravn, Hans & Münster, Marie, 2020. "Modelling of renewable gas and renewable liquid fuels in future integrated energy systems," Applied Energy, Elsevier, vol. 268(C).
    11. Huxley, O.T. & Taylor, J. & Everard, A. & Briggs, J. & Tilley, K. & Harwood, J. & Buckley, A., 2022. "The uncertainties involved in measuring national solar photovoltaic electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    12. Pan, Yue & Qin, Jianjun, 2022. "A novel probabilistic modeling framework for wind speed with highlight of extremes under data discrepancy and uncertainty," Applied Energy, Elsevier, vol. 326(C).
    13. Juan José Cartelle Barros & Manuel Lara Coira & María Pilar de la Cruz López & Alfredo del Caño Gochi & Isabel Soares, 2020. "Optimisation Techniques for Managing the Project Sustainability Objective: Application to a Shell and Tube Heat Exchanger," Sustainability, MDPI, vol. 12(11), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fodstad, Marte & Crespo del Granado, Pedro & Hellemo, Lars & Knudsen, Brage Rugstad & Pisciella, Paolo & Silvast, Antti & Bordin, Chiara & Schmidt, Sarah & Straus, Julian, 2022. "Next frontiers in energy system modelling: A review on challenges and the state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    2. Jåstad, Eirik Ogner & Trotter, Ian M. & Bolkesjø, Torjus Folsland, 2022. "Long term power prices and renewable energy market values in Norway – A probabilistic approach," Energy Economics, Elsevier, vol. 112(C).
    3. Lopion, Peter & Markewitz, Peter & Robinius, Martin & Stolten, Detlef, 2018. "A review of current challenges and trends in energy systems modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 156-166.
    4. Trutnevyte, Evelina, 2016. "Does cost optimization approximate the real-world energy transition?," Energy, Elsevier, vol. 106(C), pages 182-193.
    5. DeCarolis, Joseph & Daly, Hannah & Dodds, Paul & Keppo, Ilkka & Li, Francis & McDowall, Will & Pye, Steve & Strachan, Neil & Trutnevyte, Evelina & Usher, Will & Winning, Matthew & Yeh, Sonia & Zeyring, 2017. "Formalizing best practice for energy system optimization modelling," Applied Energy, Elsevier, vol. 194(C), pages 184-198.
    6. Li, Francis G.N. & Trutnevyte, Evelina, 2017. "Investment appraisal of cost-optimal and near-optimal pathways for the UK electricity sector transition to 2050," Applied Energy, Elsevier, vol. 189(C), pages 89-109.
    7. Price, James & Keppo, Ilkka, 2017. "Modelling to generate alternatives: A technique to explore uncertainty in energy-environment-economy models," Applied Energy, Elsevier, vol. 195(C), pages 356-369.
    8. Koppelaar, Rembrandt H.E.M. & Keirstead, James & Shah, Nilay & Woods, Jeremy, 2016. "A review of policy analysis purpose and capabilities of electricity system models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1531-1544.
    9. Steve Pye & Chris Bataille, 2016. "Improving deep decarbonization modelling capacity for developed and developing country contexts," Climate Policy, Taylor & Francis Journals, vol. 16(sup1), pages 27-46, June.
    10. Nahmmacher, Paul & Schmid, Eva & Pahle, Michael & Knopf, Brigitte, 2016. "Strategies against shocks in power systems – An analysis for the case of Europe," Energy Economics, Elsevier, vol. 59(C), pages 455-465.
    11. Hao Li & Ying Qiao & Zongxiang Lu & Baosen Zhang, 2022. "Power System Transition with Multiple Flexibility Resources: A Data-Driven Approach," Sustainability, MDPI, vol. 14(5), pages 1-25, February.
    12. Ajay Gambhir & Isabela Butnar & Pei-Hao Li & Pete Smith & Neil Strachan, 2019. "A Review of Criticisms of Integrated Assessment Models and Proposed Approaches to Address These, through the Lens of BECCS," Energies, MDPI, vol. 12(9), pages 1-21, May.
    13. Moret, Stefano & Codina Gironès, Víctor & Bierlaire, Michel & Maréchal, François, 2017. "Characterization of input uncertainties in strategic energy planning models," Applied Energy, Elsevier, vol. 202(C), pages 597-617.
    14. Felder, F.A. & Kumar, P., 2021. "A review of existing deep decarbonization models and their potential in policymaking," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    15. Prina, Matteo Giacomo & Manzolini, Giampaolo & Moser, David & Nastasi, Benedetto & Sparber, Wolfram, 2020. "Classification and challenges of bottom-up energy system models - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    16. Martin T. Ross, Patrick T. Sullivan, Allen A. Fawcett, and Brooks M. Depro, 2014. "Investigating Technology Options for Climate Policies: Differentiated Roles in ADAGE," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    17. Sebastian Rausch & Valerie J. Karplus, 2014. "Markets versus Regulation: The Efficiency and Distributional Impacts of U.S. Climate Policy Proposals," The Energy Journal, , vol. 35(1_suppl), pages 199-228, June.
    18. Andersen, Kristoffer S. & Termansen, Lars B. & Gargiulo, Maurizio & Ó Gallachóirc, Brian P., 2019. "Bridging the gap using energy services: Demonstrating a novel framework for soft linking top-down and bottom-up models," Energy, Elsevier, vol. 169(C), pages 277-293.
    19. Teotónio, Carla & Fortes, Patrícia & Roebeling, Peter & Rodriguez, Miguel & Robaina-Alves, Margarita, 2017. "Assessing the impacts of climate change on hydropower generation and the power sector in Portugal: A partial equilibrium approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 788-799.
    20. Chyong, Chi Kong & Newbery, David, 2022. "A unit commitment and economic dispatch model of the GB electricity market – Formulation and application to hydro pumped storage," Energy Policy, Elsevier, vol. 170(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:253:y:2019:i:c:52. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.