Closed Adsorption Heat Storage—A Life Cycle Assessment on Material and Component Levels
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Arce, Pablo & Medrano, Marc & Gil, Antoni & Oró, Eduard & Cabeza, Luisa F., 2011. "Overview of thermal energy storage (TES) potential energy savings and climate change mitigation in Spain and Europe," Applied Energy, Elsevier, vol. 88(8), pages 2764-2774, August.
- Scapino, Luca & Zondag, Herbert A. & Van Bael, Johan & Diriken, Jan & Rindt, Camilo C.M., 2017. "Sorption heat storage for long-term low-temperature applications: A review on the advancements at material and prototype scale," Applied Energy, Elsevier, vol. 190(C), pages 920-948.
- Aydin, Devrim & Casey, Sean P. & Riffat, Saffa, 2015. "The latest advancements on thermochemical heat storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 356-367.
- Frazzica, Andrea & Freni, Angelo, 2017. "Adsorbent working pairs for solar thermal energy storage in buildings," Renewable Energy, Elsevier, vol. 110(C), pages 87-94.
- Scapino, Luca & Zondag, Herbert A. & Van Bael, Johan & Diriken, Jan & Rindt, Camilo C.M., 2017. "Energy density and storage capacity cost comparison of conceptual solid and liquid sorption seasonal heat storage systems for low-temperature space heating," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1314-1331.
- Gaeini, M. & Rouws, A.L. & Salari, J.W.O. & Zondag, H.A. & Rindt, C.C.M., 2018. "Characterization of microencapsulated and impregnated porous host materials based on calcium chloride for thermochemical energy storage," Applied Energy, Elsevier, vol. 212(C), pages 1165-1177.
- Volmer, Rahel & Eckert, Julia & Füldner, Gerrit & Schnabel, Lena, 2017. "Evaporator development for adsorption heat transformation devices – Influencing factors on non-stationary evaporation with tube-fin heat exchangers at sub-atmospheric pressure," Renewable Energy, Elsevier, vol. 110(C), pages 141-153.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Isye Hayatina & Amar Auckaili & Mohammed Farid, 2023. "Review on the Life Cycle Assessment of Thermal Energy Storage Used in Building Applications," Energies, MDPI, vol. 16(3), pages 1-17, January.
- Adriana Estokova & Marcela Ondova & Martina Wolfova & Alena Paulikova & Stanislav Toth, 2019. "Examination of Bearing Walls Regarding Their Environmental Performance," Energies, MDPI, vol. 12(2), pages 1-27, January.
- Ahmed Rezk & Abdul Ghani Olabi & Abdul Hai Alami & Ali Radwan & Hasan Demir & Shek Mohammod Atiqure Rahman & Sheikh Khaleduzzaman Shah & Mohammad Ali Abdelkareem, 2022. "Experimental Study on Utilizing Silica Gel with Ethanol and Water for Adsorption Heat Storage," Energies, MDPI, vol. 16(1), pages 1-15, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Palacios, Anabel & Elena Navarro, M. & Barreneche, Camila & Ding, Yulong, 2020. "Hybrid 3 in 1 thermal energy storage system – Outlook for a novel storage strategy," Applied Energy, Elsevier, vol. 274(C).
- Kuznik, Frédéric & Johannes, Kevyn & Obrecht, Christian & David, Damien, 2018. "A review on recent developments in physisorption thermal energy storage for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 576-586.
- Wyttenbach, Joël & Bougard, Jacques & Descy, Gilbert & Skrylnyk, Oleksandr & Courbon, Emilie & Frère, Marc & Bruyat, Fabien, 2018. "Performances and modelling of a circular moving bed thermochemical reactor for seasonal storage," Applied Energy, Elsevier, vol. 230(C), pages 803-815.
- Scapino, Luca & Zondag, Herbert A. & Diriken, Jan & Rindt, Camilo C.M. & Van Bael, Johan & Sciacovelli, Adriano, 2019. "Modeling the performance of a sorption thermal energy storage reactor using artificial neural networks," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Mehari, Abel & Xu, Z.Y. & Wang, R.Z., 2019. "Thermally-pressurized sorption heat storage cycle with low charging temperature," Energy, Elsevier, vol. 189(C).
- Li, Wei & Klemeš, Jiří Jaromír & Wang, Qiuwang & Zeng, Min, 2022. "Salt hydrate–based gas-solid thermochemical energy storage: Current progress, challenges, and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
- Mohamed Zbair & Simona Bennici, 2021. "Survey Summary on Salts Hydrates and Composites Used in Thermochemical Sorption Heat Storage: A Review," Energies, MDPI, vol. 14(11), pages 1-33, May.
- Fumey, B. & Weber, R. & Baldini, L., 2019. "Sorption based long-term thermal energy storage – Process classification and analysis of performance limitations: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 57-74.
- Benjamin Fumey & Luca Baldini, 2021. "Static Temperature Guideline for Comparative Testing of Sorption Heat Storage Systems for Building Application," Energies, MDPI, vol. 14(13), pages 1-15, June.
- Zhang, Y.N. & Wang, R.Z. & Li, T.X., 2017. "Experimental investigation on an open sorption thermal storage system for space heating," Energy, Elsevier, vol. 141(C), pages 2421-2433.
- Gaeini, M. & Rouws, A.L. & Salari, J.W.O. & Zondag, H.A. & Rindt, C.C.M., 2018. "Characterization of microencapsulated and impregnated porous host materials based on calcium chloride for thermochemical energy storage," Applied Energy, Elsevier, vol. 212(C), pages 1165-1177.
- Salviati, Sergio & Carosio, Federico & Cantamessa, Francesco & Medina, Lilian & Berglund, Lars A. & Saracco, Guido & Fina, Alberto, 2020. "Ice-templated nanocellulose porous structure enhances thermochemical storage kinetics in hydrated salt/graphite composites," Renewable Energy, Elsevier, vol. 160(C), pages 698-706.
- Roberta Di Bari & Rafael Horn & Björn Nienborg & Felix Klinker & Esther Kieseritzky & Felix Pawelz, 2020. "The Environmental Potential of Phase Change Materials in Building Applications. A Multiple Case Investigation Based on Life Cycle Assessment and Building Simulation," Energies, MDPI, vol. 13(12), pages 1-30, June.
- Yihan Wang & Zicheng Zhang & Shuli Liu & Zhihao Wang & Yongliang Shen, 2023. "Development and Characteristics Analysis of Novel Hydrated Salt Composite Adsorbents for Thermochemical Energy Storage," Energies, MDPI, vol. 16(18), pages 1-21, September.
- Gao, Shichao & Wang, Shugang & Sun, Yi & Wang, Jihong & Hu, Peiyu & Shang, Jiaxu & Ma, Zhenjun & Liang, Yuntao, 2023. "Effect of charging operating conditions on open zeolite/water vapor sorption thermal energy storage system," Renewable Energy, Elsevier, vol. 215(C).
- Zhang, Yong & Hu, Mingke & Chen, Ziwei & Su, Yuehong & Riffat, Saffa, 2024. "Exploring a novel tubular-type modular reactor for solar-driven thermochemical energy storage," Renewable Energy, Elsevier, vol. 221(C).
- Scapino, Luca & Zondag, Herbert A. & Van Bael, Johan & Diriken, Jan & Rindt, Camilo C.M., 2017. "Energy density and storage capacity cost comparison of conceptual solid and liquid sorption seasonal heat storage systems for low-temperature space heating," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1314-1331.
- Guelpa, Elisa & Verda, Vittorio, 2019. "Thermal energy storage in district heating and cooling systems: A review," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
- Mehrabadi, Abbas & Farid, Mohammed, 2018. "New salt hydrate composite for low-grade thermal energy storage," Energy, Elsevier, vol. 164(C), pages 194-203.
- Mazur, Natalia & Blijlevens, Melian A.R. & Ruliaman, Rick & Fischer, Hartmut & Donkers, Pim & Meekes, Hugo & Vlieg, Elias & Adan, Olaf & Huinink, Henk, 2023. "Revisiting salt hydrate selection for domestic heat storage applications," Renewable Energy, Elsevier, vol. 218(C).
More about this item
Keywords
thermochemical storage; sorption storage; adsorption; storage capacity; life cycle assessment; embedded energy; global warming potential;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3421-:d:188547. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.