IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v182y2016icp383-393.html
   My bibliography  Save this article

Hybrid model for heat recovery heat pipe system in Liquid Desiccant Dehumidification System

Author

Listed:
  • Shen, Suping
  • Cai, Wenjian
  • Wang, Xinli
  • Wu, Qiong
  • Yon, Haoren

Abstract

In this paper, a hybrid model for heat pipe heat exchanger used for heat recovery in regenerator of Liquid Desiccant Dehumidification System (LDDS) is developed. The proposed hybrid model starts from the physical governing equations and lumps the complex geometric parameters and fluids’ thermodynamic coefficients as constants since they have very small changes during the process operation. The resulting model has only three unknown parameters which can be determined by Levenberg-Marquardt method. Compared with the existing heat pipe models, the proposed model is very simple, accurate, and does not require iterative computations. A large amount of testing for the heat pipe heat exchanger installed in a pilot LDDS shows that the model is very effective to predict the performance in a wide operating range. The model is expected to find its applications in monitoring, control and optimization of the regenerator heat recovery process of LDDS.

Suggested Citation

  • Shen, Suping & Cai, Wenjian & Wang, Xinli & Wu, Qiong & Yon, Haoren, 2016. "Hybrid model for heat recovery heat pipe system in Liquid Desiccant Dehumidification System," Applied Energy, Elsevier, vol. 182(C), pages 383-393.
  • Handle: RePEc:eee:appene:v:182:y:2016:i:c:p:383-393
    DOI: 10.1016/j.apenergy.2016.08.128
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916312284
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.08.128?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alosaimy, A.S. & Hamed, Ahmed M., 2011. "Theoretical and experimental investigation on the application of solar water heater coupled with air humidifier for regeneration of liquid desiccant," Energy, Elsevier, vol. 36(7), pages 3992-4001.
    2. Yang, Zili & Zhang, Kaisheng & Hwang, Yunho & Lian, Zhiwei, 2016. "Performance investigation on the ultrasonic atomization liquid desiccant regeneration system," Applied Energy, Elsevier, vol. 171(C), pages 12-25.
    3. Ding, Xudong & Cai, Wenjian & Jia, Lei & Wen, Changyun, 2009. "Evaporator modeling - A hybrid approach," Applied Energy, Elsevier, vol. 86(1), pages 81-88, January.
    4. Wang, Xinli & Cai, Wenjian & Lu, Jiangang & Sun, Youxian & Ding, Xudong, 2013. "A hybrid dehumidifier model for real-time performance monitoring, control and optimization in liquid desiccant dehumidification system," Applied Energy, Elsevier, vol. 111(C), pages 449-455.
    5. Liu, X.H. & Jiang, Y. & Yi, X.Q., 2009. "Effect of regeneration mode on the performance of liquid desiccant packed bed regenerator," Renewable Energy, Elsevier, vol. 34(1), pages 209-216.
    6. Liu, X.H. & Jiang, Y. & Chang, X.M. & Yi, X.Q., 2007. "Experimental investigation of the heat and mass transfer between air and liquid desiccant in a cross-flow regenerator," Renewable Energy, Elsevier, vol. 32(10), pages 1623-1636.
    7. Audah, N. & Ghaddar, N. & Ghali, K., 2011. "Optimized solar-powered liquid desiccant system to supply building fresh water and cooling needs," Applied Energy, Elsevier, vol. 88(11), pages 3726-3736.
    8. Srimuang, W. & Amatachaya, P., 2012. "A review of the applications of heat pipe heat exchangers for heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4303-4315.
    9. Hughes, Ben Richard & Chaudhry, Hassam Nasarullah & Calautit, John Kaiser, 2014. "Passive energy recovery from natural ventilation air streams," Applied Energy, Elsevier, vol. 113(C), pages 127-140.
    10. Liu, X.P. & Niu, J.L., 2014. "An optimal design analysis method for heat recovery devices in building applications," Applied Energy, Elsevier, vol. 129(C), pages 364-372.
    11. Eicker, Ursula & Schneider, Dietrich & Schumacher, Jürgen & Ge, Tianshu & Dai, Yanjun, 2010. "Operational experiences with solar air collector driven desiccant cooling systems," Applied Energy, Elsevier, vol. 87(12), pages 3735-3747, December.
    12. Calautit, John Kaiser & Chaudhry, Hassam Nasarullah & Hughes, Ben Richard & Ghani, Saud Abdul, 2013. "Comparison between evaporative cooling and a heat pipe assisted thermal loop for a commercial wind tower in hot and dry climatic conditions," Applied Energy, Elsevier, vol. 101(C), pages 740-755.
    13. Jung, Eui Guk & Boo, Joon Hong, 2014. "Thermal numerical model of a high temperature heat pipe heat exchanger under radiation," Applied Energy, Elsevier, vol. 135(C), pages 586-596.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Ning & Yin, Shao-You & Li, Min, 2018. "Model-based optimization for a heat pump driven and hollow fiber membrane hybrid two-stage liquid desiccant air dehumidification system," Applied Energy, Elsevier, vol. 228(C), pages 12-20.
    2. Aridi, Rima & Faraj, Jalal & Ali, Samer & Lemenand, Thierry & khaled, Mahmoud, 2022. "A comprehensive review on hybrid heat recovery systems: Classifications, applications, pros and cons, and new systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Wu, Qiong & Cai, WenJian & Shen, Suping & Wang, Xinli & Ren, Haoren, 2017. "A regulation strategy of working concentration in the dehumidifier of liquid desiccant air conditioner," Applied Energy, Elsevier, vol. 202(C), pages 648-661.
    4. Alhuyi Nazari, Mohammad & Ahmadi, Mohammad H. & Ghasempour, Roghayeh & Shafii, Mohammad Behshad & Mahian, Omid & Kalogirou, Soteris & Wongwises, Somchai, 2018. "A review on pulsating heat pipes: From solar to cryogenic applications," Applied Energy, Elsevier, vol. 222(C), pages 475-484.
    5. Islam, M.R. & Alan, S.W.L. & Chua, K.J., 2018. "Studying the heat and mass transfer process of liquid desiccant for dehumidification and cooling," Applied Energy, Elsevier, vol. 221(C), pages 334-347.
    6. Shen, Suping & Cai, Wenjian & Wang, Xinli & Wu, Qiong & Yon, Haoren, 2017. "Investigation of liquid desiccant regenerator with fixed-plate heat recovery system," Energy, Elsevier, vol. 137(C), pages 172-182.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Suping & Cai, Wenjian & Wang, Xinli & Wu, Qiong & Yon, Haoren, 2017. "Investigation of liquid desiccant regenerator with fixed-plate heat recovery system," Energy, Elsevier, vol. 137(C), pages 172-182.
    2. Peng, Donggen & Luo, Danting, 2017. "Modeling and parametrical analysis on internally-heated liquid desiccant regenerator in liquid desiccant air conditioning," Energy, Elsevier, vol. 141(C), pages 461-471.
    3. Li, Xian & Liu, Shuai & Tan, Kok Kiong & Wang, Qing-Guo & Cai, Wen-Jian & Xie, Lihua, 2016. "Dynamic modeling of a liquid desiccant dehumidifier," Applied Energy, Elsevier, vol. 180(C), pages 435-445.
    4. Wang, Xinli & Cai, Wenjian & Lu, Jiangang & Sun, Youxian & Ding, Xudong, 2013. "A hybrid dehumidifier model for real-time performance monitoring, control and optimization in liquid desiccant dehumidification system," Applied Energy, Elsevier, vol. 111(C), pages 449-455.
    5. Su, Wei & Lu, Zhifei & She, Xiaohui & Zhou, Junming & Wang, Feng & Sun, Bo & Zhang, Xiaosong, 2022. "Liquid desiccant regeneration for advanced air conditioning: A comprehensive review on desiccant materials, regenerators, systems and improvement technologies," Applied Energy, Elsevier, vol. 308(C).
    6. O’Connor, Dominic & Calautit, John Kaiser S. & Hughes, Ben Richard, 2016. "A review of heat recovery technology for passive ventilation applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1481-1493.
    7. Yon, Hao Ren & Cai, Wenjian & Wang, Youyi & Shen, Suping, 2018. "Performance investigation on a novel liquid desiccant regeneration system operating in vacuum condition," Applied Energy, Elsevier, vol. 211(C), pages 249-258.
    8. Mohammad, Abdulrahman Th. & Mat, Sohif Bin & Sopian, K. & Al-abidi, Abduljalil A., 2016. "Review: Survey of the control strategy of liquid desiccant systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 250-258.
    9. Abdel-Salam, Ahmed H. & Simonson, Carey J., 2016. "State-of-the-art in liquid desiccant air conditioning equipment and systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1152-1183.
    10. Chen, Q. & Kum Ja, M. & Li, Y. & Chua, K.J., 2018. "Thermodynamic optimization of a vacuum multi-effect membrane distillation system for liquid desiccant regeneration," Applied Energy, Elsevier, vol. 230(C), pages 960-973.
    11. Abdel-Salam, Mohamed R.H. & Ge, Gaoming & Fauchoux, Melanie & Besant, Robert W. & Simonson, Carey J., 2014. "State-of-the-art in liquid-to-air membrane energy exchangers (LAMEEs): A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 700-728.
    12. Angrisani, Giovanni & Roselli, Carlo & Sasso, Maurizio, 2015. "Experimental assessment of the energy performance of a hybrid desiccant cooling system and comparison with other air-conditioning technologies," Applied Energy, Elsevier, vol. 138(C), pages 533-545.
    13. Fekadu, Geleta & Subudhi, Sudhakar, 2018. "Renewable energy for liquid desiccants air conditioning system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 364-379.
    14. Wen, Tao & Lu, Lin, 2019. "A review of correlations and enhancement approaches for heat and mass transfer in liquid desiccant dehumidification system," Applied Energy, Elsevier, vol. 239(C), pages 757-784.
    15. Prieto, Alejandro & Knaack, Ulrich & Klein, Tillmann & Auer, Thomas, 2017. "25 Years of cooling research in office buildings: Review for the integration of cooling strategies into the building façade (1990–2014)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 89-102.
    16. Wang, Xinli & Cai, Wenjian & Yin, Xiaohong, 2017. "A global optimized operation strategy for energy savings in liquid desiccant air conditioning using self-adaptive differential evolutionary algorithm," Applied Energy, Elsevier, vol. 187(C), pages 410-423.
    17. Wu, Qiong & Cai, WenJian & Shen, Suping & Wang, Xinli & Ren, Haoren, 2017. "A regulation strategy of working concentration in the dehumidifier of liquid desiccant air conditioner," Applied Energy, Elsevier, vol. 202(C), pages 648-661.
    18. Rambhad, Kishor S. & Walke, Pramod V. & Tidke, D.J., 2016. "Solid desiccant dehumidification and regeneration methods—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 73-83.
    19. Calautit, John Kaiser & Hughes, Ben Richard & O’Connor, Dominic & Shahzad, Sally Salome, 2017. "Numerical and experimental analysis of a multi-directional wind tower integrated with vertically-arranged heat transfer devices (VHTD)," Applied Energy, Elsevier, vol. 185(P2), pages 1120-1135.
    20. Qi, Ronghui & Lu, Lin & Yang, Hongxing & Qin, Fei, 2013. "Investigation on wetted area and film thickness for falling film liquid desiccant regeneration system," Applied Energy, Elsevier, vol. 112(C), pages 93-101.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:182:y:2016:i:c:p:383-393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.