IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v207y2017icp643-653.html
   My bibliography  Save this article

A two-stage liquid desiccant dehumidification system by the cascade utilization of low-temperature heat for industrial applications

Author

Listed:
  • Su, Bosheng
  • Han, Wei
  • Sui, Jun
  • Jin, Hongguang

Abstract

Cooling dehumidification driven by power is widely used in industrial processes to obtain dry air, but the main drawback is its large power consumption. In these processes, large amounts of low-temperature waste heat are released to the environment directly, so there is a great energy-saving potential to recover low-temperature waste heat and generate dry air. A new two-stage liquid desiccant dehumidification system with the cascade utilization of low-temperature heat is proposed. The waste heat is used in a cascade manner. The higher-temperature heat is used to generate a strong desiccant solution, which will be used in the first-stage dehumidifier. The lower-temperature heat is used to drive a single-effect absorption refrigerator and provide cooling energy to the second-stage dehumidifier. Simulation results showed that the proposed system can reduce electricity consumption by 92.29% compared with the conventional cooling dehumidification system driven by power. The ratio of electricity savings to absorbed heat can reach 7.35%. The advantage of the cascade utilization of the low-temperature heat was further illuminated by studying the driving force in the dehumidifiers, and a preliminary economic and environmental analysis was performed. The increased initial investment can be recovered in only 3.39years. Approximately 11,028 tons of standard coal are saved per year, and a reduction of 27,488 tons CO2 can also be realized per year. Finally, a parametric sensitivity analysis was conducted to optimize the system performance. This study may provide a new method to perform dehumidification by efficiently using a low-temperature heat source.

Suggested Citation

  • Su, Bosheng & Han, Wei & Sui, Jun & Jin, Hongguang, 2017. "A two-stage liquid desiccant dehumidification system by the cascade utilization of low-temperature heat for industrial applications," Applied Energy, Elsevier, vol. 207(C), pages 643-653.
  • Handle: RePEc:eee:appene:v:207:y:2017:i:c:p:643-653
    DOI: 10.1016/j.apenergy.2017.05.184
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191730747X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.05.184?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bruno, Joan Carles & Ortega-López, Víctor & Coronas, Alberto, 2009. "Integration of absorption cooling systems into micro gas turbine trigeneration systems using biogas: Case study of a sewage treatment plant," Applied Energy, Elsevier, vol. 86(6), pages 837-847, June.
    2. Xiong, Z.Q. & Dai, Y.J. & Wang, R.Z., 2010. "Development of a novel two-stage liquid desiccant dehumidification system assisted by CaCl2 solution using exergy analysis method," Applied Energy, Elsevier, vol. 87(5), pages 1495-1504, May.
    3. Lu, Hongyou & Price, Lynn & Zhang, Qi, 2016. "Capturing the invisible resource: Analysis of waste heat potential in Chinese industry," Applied Energy, Elsevier, vol. 161(C), pages 497-511.
    4. Li, Xiu-Wei & Zhang, Xiao-Song & Quan, Shuo, 2011. "Single-stage and double-stage photovoltaic driven regeneration for liquid desiccant cooling system," Applied Energy, Elsevier, vol. 88(12), pages 4908-4917.
    5. Gao, P. & Wang, L.W. & Wang, R.Z. & Jiang, L. & Zhou, Z.S., 2015. "Experimental investigation on a small pumpless ORC (organic rankine cycle) system driven by the low temperature heat source," Energy, Elsevier, vol. 91(C), pages 324-333.
    6. Wang, Xinli & Cai, Wenjian & Yin, Xiaohong, 2017. "A global optimized operation strategy for energy savings in liquid desiccant air conditioning using self-adaptive differential evolutionary algorithm," Applied Energy, Elsevier, vol. 187(C), pages 410-423.
    7. Wang, Yuan & Zhang, Chen & Lu, Aitong & Li, Li & He, Yanmin & ToJo, Junji & Zhu, Xiaodong, 2017. "A disaggregated analysis of the environmental Kuznets curve for industrial CO2 emissions in China," Applied Energy, Elsevier, vol. 190(C), pages 172-180.
    8. Li, Xian & Liu, Shuai & Tan, Kok Kiong & Wang, Qing-Guo & Cai, Wen-Jian & Xie, Lihua, 2016. "Dynamic modeling of a liquid desiccant dehumidifier," Applied Energy, Elsevier, vol. 180(C), pages 435-445.
    9. Xu, Jin-Hua & Fleiter, Tobias & Fan, Ying & Eichhammer, Wolfgang, 2014. "CO2 emissions reduction potential in China’s cement industry compared to IEA’s Cement Technology Roadmap up to 2050," Applied Energy, Elsevier, vol. 130(C), pages 592-602.
    10. Zhang, Ning & Yin, Shao-You & Zhang, Li-Zhi, 2016. "Performance study of a heat pump driven and hollow fiber membrane-based two-stage liquid desiccant air dehumidification system," Applied Energy, Elsevier, vol. 179(C), pages 727-737.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang, Jyun-De & Hsu, Chien-Yeh & Hung, Tai-Chih & Chiang, Yuan-Ching & Chen, Sih-Li, 2018. "Geometrical parameters analysis of improved circulating inclined fluidized beds for general HVAC duct systems," Applied Energy, Elsevier, vol. 230(C), pages 784-793.
    2. Liu, Wei & Gong, Yanfeng & Niu, Xiaofeng & Shen, Junjie & Kosonen, Risto, 2019. "Dynamic modeling of liquid-desiccant regenerator based on a state–space method," Applied Energy, Elsevier, vol. 240(C), pages 744-753.
    3. Gao, D.C. & Sun, Y.J. & Ma, Z. & Ren, H., 2021. "A review on integration and design of desiccant air-conditioning systems for overall performance improvements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    4. Su, Wei & Lu, Zhifei & She, Xiaohui & Zhou, Junming & Wang, Feng & Sun, Bo & Zhang, Xiaosong, 2022. "Liquid desiccant regeneration for advanced air conditioning: A comprehensive review on desiccant materials, regenerators, systems and improvement technologies," Applied Energy, Elsevier, vol. 308(C).
    5. Wen, Tao & Luo, Yimo & Wang, Meng & She, Xiaohui, 2021. "Comparative study on the liquid desiccant dehumidification performance of lithium chloride and potassium formate," Renewable Energy, Elsevier, vol. 167(C), pages 841-852.
    6. Dai, Yuze & Liu, Feng & Sui, Jun & Wang, Dandan & Han, Wei & Jin, Hongguang, 2020. "Hybrid liquid desiccant air-conditioning system combined with marine aerosol removal driven by low-temperature heat source," Applied Energy, Elsevier, vol. 275(C).
    7. Zhang, Ning & Yin, Shao-You & Li, Min, 2018. "Model-based optimization for a heat pump driven and hollow fiber membrane hybrid two-stage liquid desiccant air dehumidification system," Applied Energy, Elsevier, vol. 228(C), pages 12-20.
    8. Zhao, Yuxuan & Liu, Shengyuan & Lin, Zhenzhi & Wen, Fushuan & Ding, Yi, 2021. "Coordinated scheduling strategy for an integrated system with concentrating solar power plants and solar prosumers considering thermal interactions and demand flexibilities," Applied Energy, Elsevier, vol. 304(C).
    9. Su, Bosheng & Han, Wei & He, Hongzhou & Jin, Hongguang & Chen, Zhijie & Zheng, Jieqing & Yang, Shaohui & Zhang, Xiaodong, 2020. "Using moderate carbon dioxide separation to improve the performance of solar-driven biogas reforming process," Applied Energy, Elsevier, vol. 279(C).
    10. Mu, Chenlu & Ding, Tao & Qu, Ming & Zhou, Quan & Li, Fangxing & Shahidehpour, Mohammad, 2020. "Decentralized optimization operation for the multiple integrated energy systems with energy cascade utilization," Applied Energy, Elsevier, vol. 280(C).
    11. Chen, W.D. & Chua, K.J., 2021. "Energy performance analysis and optimization of a coupled adsorption and absorption cascade refrigeration system," Applied Energy, Elsevier, vol. 301(C).
    12. Su, Bosheng & Han, Wei & Qu, Wanjun & Liu, Changchun & Jin, Hongguang, 2018. "A new hybrid photovoltaic/thermal and liquid desiccant system for trigeneration application," Applied Energy, Elsevier, vol. 226(C), pages 808-818.
    13. Cao, Bowen & Yin, Yonggao & Xu, Guoying & Cheng, Xiaosong & Li, Wenzhang & Ji, Qiang & Chen, Wanhe, 2023. "A proposed method of bubble absorption-based deep dehumidification using the ionic liquid for low-humidity industrial environments with experimental performance," Applied Energy, Elsevier, vol. 348(C).
    14. Liang, Chenjiyu & Li, Xianting & Zheng, Gonghang, 2022. "Optimizing air conditioning systems by considering the grades of sensible and latent heat loads," Applied Energy, Elsevier, vol. 322(C).
    15. Liu, Liuchen & Wu, Jinlu & Zhong, Fen & Gao, Naiping & Cui, Guomin, 2021. "Development of a novel cogeneration system by combing organic rankine cycle and heat pump cycle for waste heat recovery," Energy, Elsevier, vol. 217(C).
    16. Shukla, D.L. & Modi, K.V., 2022. "Influence of distinct input parameters on performance indices of dehumidifier, regenerator and on liquid desiccant-operated evaporative cooling system – A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    17. Zhang, Lun & Song, Xia & Zhang, Xiaosong, 2019. "Theoretical analysis of exergy destruction and exergy flow in direct contact process between humid air and water/liquid desiccant solution," Energy, Elsevier, vol. 187(C).
    18. Qu, Wanjun & Hong, Hui & Su, Bosheng & Tang, Sanli & Jin, Hongguang, 2018. "A concentrating photovoltaic/Kalina cycle coupled with absorption chiller," Applied Energy, Elsevier, vol. 224(C), pages 481-493.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Qiong & Cai, WenJian & Shen, Suping & Wang, Xinli & Ren, Haoren, 2017. "A regulation strategy of working concentration in the dehumidifier of liquid desiccant air conditioner," Applied Energy, Elsevier, vol. 202(C), pages 648-661.
    2. Qi, Ronghui & Li, Dujuan & Zhang, Li-Zhi, 2017. "Performance investigation on polymeric electrolyte membrane-based electrochemical air dehumidification system," Applied Energy, Elsevier, vol. 208(C), pages 1174-1183.
    3. Zhang, Ning & Yin, Shao-You & Li, Min, 2018. "Model-based optimization for a heat pump driven and hollow fiber membrane hybrid two-stage liquid desiccant air dehumidification system," Applied Energy, Elsevier, vol. 228(C), pages 12-20.
    4. Liu, Wei & Gong, Yanfeng & Niu, Xiaofeng & Shen, Junjie & Kosonen, Risto, 2019. "Dynamic modeling of liquid-desiccant regenerator based on a state–space method," Applied Energy, Elsevier, vol. 240(C), pages 744-753.
    5. Ou, Xianhua & Cai, Wenjian & He, Xiongxiong & Zhai, Deqing, 2018. "Experimental investigations on heat and mass transfer performances of a liquid desiccant cooling and dehumidification system," Applied Energy, Elsevier, vol. 220(C), pages 164-175.
    6. Angrisani, Giovanni & Roselli, Carlo & Sasso, Maurizio, 2015. "Experimental assessment of the energy performance of a hybrid desiccant cooling system and comparison with other air-conditioning technologies," Applied Energy, Elsevier, vol. 138(C), pages 533-545.
    7. Su, Bosheng & Han, Wei & Jin, Hongguang, 2017. "Proposal and assessment of a novel integrated CCHP system with biogas steam reforming using solar energy," Applied Energy, Elsevier, vol. 206(C), pages 1-11.
    8. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 813-833.
    9. Su, Wei & Lu, Zhifei & She, Xiaohui & Zhou, Junming & Wang, Feng & Sun, Bo & Zhang, Xiaosong, 2022. "Liquid desiccant regeneration for advanced air conditioning: A comprehensive review on desiccant materials, regenerators, systems and improvement technologies," Applied Energy, Elsevier, vol. 308(C).
    10. Jiang, Yuliang & Wang, Xinli & Zhao, Hongxia & Wang, Lei & Yin, Xiaohong & Jia, Lei, 2020. "Dynamic modeling and economic model predictive control of a liquid desiccant air conditioning," Applied Energy, Elsevier, vol. 259(C).
    11. Guo, Yi & Al-Jubainawi, Ali & Peng, Xueyuan, 2019. "Modelling and the feasibility study of a hybrid electrodialysis and thermal regeneration method for LiCl liquid desiccant dehumidification," Applied Energy, Elsevier, vol. 239(C), pages 1014-1036.
    12. Cheng, Qing & Xu, Wenhao, 2017. "Performance analysis of a novel multi-function liquid desiccant regeneration system for liquid desiccant air-conditioning system," Energy, Elsevier, vol. 140(P1), pages 240-252.
    13. Islam, M.R. & Alan, S.W.L. & Chua, K.J., 2018. "Studying the heat and mass transfer process of liquid desiccant for dehumidification and cooling," Applied Energy, Elsevier, vol. 221(C), pages 334-347.
    14. Juan Prieto & Antonio Atienza-Márquez & Alberto Coronas, 2021. "Modeling and Dynamic Simulation of a Hybrid Liquid Desiccant System with Non-Adiabatic Falling-Film Air-Solution Contactors for Air Conditioning Applications in Buildings," Energies, MDPI, vol. 14(2), pages 1-20, January.
    15. Yang, Zili & Zhang, Kaisheng & Hwang, Yunho & Lian, Zhiwei, 2016. "Performance investigation on the ultrasonic atomization liquid desiccant regeneration system," Applied Energy, Elsevier, vol. 171(C), pages 12-25.
    16. Zhang, Ning & Yin, Shao-You & Zhang, Li-Zhi, 2016. "Performance study of a heat pump driven and hollow fiber membrane-based two-stage liquid desiccant air dehumidification system," Applied Energy, Elsevier, vol. 179(C), pages 727-737.
    17. Gurubalan, A. & Maiya, M.P. & Geoghegan, Patrick J., 2019. "A comprehensive review of liquid desiccant air conditioning system," Applied Energy, Elsevier, vol. 254(C).
    18. Enteria, Napoleon & Yoshino, Hiroshi & Mochida, Akashi, 2013. "Review of the advances in open-cycle absorption air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 265-289.
    19. Abdel-Salam, Ahmed H. & Simonson, Carey J., 2016. "State-of-the-art in liquid desiccant air conditioning equipment and systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1152-1183.
    20. Tan, Chang & Yu, Xiang & Guan, Yuru, 2022. "A technology-driven pathway to net-zero carbon emissions for China's cement industry," Applied Energy, Elsevier, vol. 325(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:207:y:2017:i:c:p:643-653. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.