IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v140y2017ip1p240-252.html
   My bibliography  Save this article

Performance analysis of a novel multi-function liquid desiccant regeneration system for liquid desiccant air-conditioning system

Author

Listed:
  • Cheng, Qing
  • Xu, Wenhao

Abstract

The liquid desiccant air-conditioning system (LDAS) is a novel air-conditioner with good energy saving potential. Regenerator is the key component of the liquid desiccant air-conditioning system, which is the main energy-consumed part. Electrodialysis regenerator is a new liquid desiccant regeneration method which can meet the dehumidification requirements even when the environment air is hot and wet. In this paper, in order to reduce the waste of electrode solution and the operational cost of normal electrodialysis regenerator, a novel multi-function liquid desiccant regeneration system was developed and investigated. Moreover, an experimental system was constructed to achieve the accurate current efficiency of the new system. The results show that in order to improve the current efficiency of the multi-function desiccant regeneration system, the operational current and the concentration difference between solutions in regenerate chambers and dilute chambers should be both decreased. The ideal performance coefficient of liquid desiccant air-conditioning system can exceed 7 when the conductivity of liquid desiccant is higher than 300 mS/cm. In the practical application of the multi-function liquid desiccant regeneration system, the operational current will be designed to fulfill the hydrogen and halogen gas production of the system.

Suggested Citation

  • Cheng, Qing & Xu, Wenhao, 2017. "Performance analysis of a novel multi-function liquid desiccant regeneration system for liquid desiccant air-conditioning system," Energy, Elsevier, vol. 140(P1), pages 240-252.
  • Handle: RePEc:eee:energy:v:140:y:2017:i:p1:p:240-252
    DOI: 10.1016/j.energy.2017.08.092
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217314676
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.08.092?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Zili & Zhang, Kaisheng & Hwang, Yunho & Lian, Zhiwei, 2016. "Performance investigation on the ultrasonic atomization liquid desiccant regeneration system," Applied Energy, Elsevier, vol. 171(C), pages 12-25.
    2. Li, Xiu-Wei & Zhang, Xiao-Song & Wang, Hao & Zhang, Zhuo, 2016. "Capacitive deionization regeneration as a possible improvement of membrane regeneration method for absorption air-conditioning system," Applied Energy, Elsevier, vol. 171(C), pages 405-414.
    3. Li, Xiu-Wei & Zhang, Xiao-Song & Quan, Shuo, 2011. "Single-stage and double-stage photovoltaic driven regeneration for liquid desiccant cooling system," Applied Energy, Elsevier, vol. 88(12), pages 4908-4917.
    4. Xie, Ying & Zhang, Tao & Liu, Xiaohua, 2016. "Performance investigation of a counter-flow heat pump driven liquid desiccant dehumidification system," Energy, Elsevier, vol. 115(P1), pages 446-457.
    5. Keniar, Khoudor & Ghali, Kamel & Ghaddar, Nesreen, 2015. "Study of solar regenerated membrane desiccant system to control humidity and decrease energy consumption in office spaces," Applied Energy, Elsevier, vol. 138(C), pages 121-132.
    6. Abdel-Salam, Ahmed H. & Simonson, Carey J., 2014. "Annual evaluation of energy, environmental and economic performances of a membrane liquid desiccant air conditioning system with/without ERV," Applied Energy, Elsevier, vol. 116(C), pages 134-148.
    7. Das, Rajat Subhra & Jain, Sanjeev, 2015. "Performance characteristics of cross-flow membrane contactors for liquid desiccant systems," Applied Energy, Elsevier, vol. 141(C), pages 1-11.
    8. Yang, Zili & Zhang, Kaisheng & Lian, Zhiwei & Zhang, Huibo, 2016. "Sensitivity and stability analysis on the performance of ultrasonic atomization liquid desiccant dehumidification system," Energy, Elsevier, vol. 112(C), pages 1169-1183.
    9. Zhang, Ning & Yin, Shao-You & Zhang, Li-Zhi, 2016. "Performance study of a heat pump driven and hollow fiber membrane-based two-stage liquid desiccant air dehumidification system," Applied Energy, Elsevier, vol. 179(C), pages 727-737.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guan, Bowen & Zhang, Tao & Jun, Liu & Liu, Xiaohua, 2020. "Exergy analysis and performance improvement of liquid-desiccant deep-dehumidification system: An engineering case study," Energy, Elsevier, vol. 196(C).
    2. Dong, Chuanshuai & Lu, Lin & Wen, Tao, 2018. "Investigating dehumidification performance of solar-assisted liquid desiccant dehumidifiers considering different surface properties," Energy, Elsevier, vol. 164(C), pages 978-994.
    3. Pasqualin, P. & Lefers, R. & Mahmoud, S. & Davies, P.A., 2022. "Comparative review of membrane-based desalination technologies for energy-efficient regeneration in liquid desiccant air conditioning of greenhouses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    4. Ou, Xianhua & Cai, Wenjian & He, Xiongxiong & Zhai, Deqing, 2018. "Experimental investigations on heat and mass transfer performances of a liquid desiccant cooling and dehumidification system," Applied Energy, Elsevier, vol. 220(C), pages 164-175.
    5. She, Xiaohui & Cong, Lin & Nie, Binjian & Leng, Guanghui & Peng, Hao & Chen, Yi & Zhang, Xiaosong & Wen, Tao & Yang, Hongxing & Luo, Yimo, 2018. "Energy-efficient and -economic technologies for air conditioning with vapor compression refrigeration: A comprehensive review," Applied Energy, Elsevier, vol. 232(C), pages 157-186.
    6. Liu, Hongdou & Yang, Hongquan & Qi, Ronghui, 2020. "A review of electrically driven dehumidification technology for air-conditioning systems," Applied Energy, Elsevier, vol. 279(C).
    7. Qing Cheng & Han Wang, 2020. "Experimental Research on Regeneration Characteristic of ED Regeneration for Lithium Bromide Desiccant Solution with High Concentration: Operating Condition and Electrode Solution," Energies, MDPI, vol. 13(18), pages 1-14, September.
    8. Qing Cheng & Han Wang & Lin Zhu & Yao Chen, 2023. "A current efficiency model coupled with desiccant molecular weight for electrodialysis regeneration in liquid desiccant air-conditioning systems," Energy & Environment, , vol. 34(4), pages 909-926, June.
    9. Pei, Wang & Cheng, Qing & Jiao, Shun & Liu, Lin, 2019. "Performance evaluation of the electrodialysis regenerator for the lithium bromide solution with high concentration in the liquid desiccant air-conditioning system," Energy, Elsevier, vol. 187(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Qing & Zhang, Xiaosong & Jiao, Shun, 2017. "Influence of concentration difference between dilute cells and regenerate cells on the performance of electrodialysis regenerator," Energy, Elsevier, vol. 140(P1), pages 646-655.
    2. Su, Wei & Lu, Zhifei & She, Xiaohui & Zhou, Junming & Wang, Feng & Sun, Bo & Zhang, Xiaosong, 2022. "Liquid desiccant regeneration for advanced air conditioning: A comprehensive review on desiccant materials, regenerators, systems and improvement technologies," Applied Energy, Elsevier, vol. 308(C).
    3. Yang, Zili & Tao, Ruiyang & Ni, Hui & Zhong, Ke & Lian, Zhiwei, 2019. "Performance study of the internally-cooled ultrasonic atomization liquid desiccant dehumidification system," Energy, Elsevier, vol. 175(C), pages 745-757.
    4. Wang, Xinli & Cai, Wenjian & Yin, Xiaohong, 2017. "A global optimized operation strategy for energy savings in liquid desiccant air conditioning using self-adaptive differential evolutionary algorithm," Applied Energy, Elsevier, vol. 187(C), pages 410-423.
    5. Wu, Qiong & Cai, WenJian & Shen, Suping & Wang, Xinli & Ren, Haoren, 2017. "A regulation strategy of working concentration in the dehumidifier of liquid desiccant air conditioner," Applied Energy, Elsevier, vol. 202(C), pages 648-661.
    6. Pei, Wang & Cheng, Qing & Jiao, Shun & Liu, Lin, 2019. "Performance evaluation of the electrodialysis regenerator for the lithium bromide solution with high concentration in the liquid desiccant air-conditioning system," Energy, Elsevier, vol. 187(C).
    7. Qi, Ronghui & Li, Dujuan & Zhang, Li-Zhi, 2017. "Performance investigation on polymeric electrolyte membrane-based electrochemical air dehumidification system," Applied Energy, Elsevier, vol. 208(C), pages 1174-1183.
    8. Yang, Zili & Zhang, Kaisheng & Hwang, Yunho & Lian, Zhiwei, 2016. "Performance investigation on the ultrasonic atomization liquid desiccant regeneration system," Applied Energy, Elsevier, vol. 171(C), pages 12-25.
    9. Abdel-Salam, Ahmed H. & Simonson, Carey J., 2016. "State-of-the-art in liquid desiccant air conditioning equipment and systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1152-1183.
    10. Angrisani, Giovanni & Roselli, Carlo & Sasso, Maurizio, 2015. "Experimental assessment of the energy performance of a hybrid desiccant cooling system and comparison with other air-conditioning technologies," Applied Energy, Elsevier, vol. 138(C), pages 533-545.
    11. Zhang, Qunli & Li, Yanxin & Zhang, Qiuyue & Ma, Fengge & Lü, Xiaoshu, 2024. "Application of deep dehumidification technology in low-humidity industry: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    12. Guo, Yi & Al-Jubainawi, Ali & Peng, Xueyuan, 2019. "Modelling and the feasibility study of a hybrid electrodialysis and thermal regeneration method for LiCl liquid desiccant dehumidification," Applied Energy, Elsevier, vol. 239(C), pages 1014-1036.
    13. Islam, M.R. & Alan, S.W.L. & Chua, K.J., 2018. "Studying the heat and mass transfer process of liquid desiccant for dehumidification and cooling," Applied Energy, Elsevier, vol. 221(C), pages 334-347.
    14. Shukla, D.L. & Modi, K.V., 2022. "Influence of distinct input parameters on performance indices of dehumidifier, regenerator and on liquid desiccant-operated evaporative cooling system – A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    15. Peng, Donggen & Luo, Danting, 2017. "Modeling and parametrical analysis on internally-heated liquid desiccant regenerator in liquid desiccant air conditioning," Energy, Elsevier, vol. 141(C), pages 461-471.
    16. Zhang, Ning & Yin, Shao-You & Li, Min, 2018. "Model-based optimization for a heat pump driven and hollow fiber membrane hybrid two-stage liquid desiccant air dehumidification system," Applied Energy, Elsevier, vol. 228(C), pages 12-20.
    17. Thu, K. & Mitra, S. & Saha, B.B. & Srinivasa Murthy, S., 2018. "Thermodynamic feasibility evaluation of hybrid dehumidification – mechanical vapour compression systems," Applied Energy, Elsevier, vol. 213(C), pages 31-44.
    18. Zhang, Ning & Yin, Shao-You & Zhang, Li-Zhi, 2016. "Performance study of a heat pump driven and hollow fiber membrane-based two-stage liquid desiccant air dehumidification system," Applied Energy, Elsevier, vol. 179(C), pages 727-737.
    19. Gurubalan, A. & Maiya, M.P. & Geoghegan, Patrick J., 2019. "A comprehensive review of liquid desiccant air conditioning system," Applied Energy, Elsevier, vol. 254(C).
    20. Liu, Wei & Gong, Yanfeng & Niu, Xiaofeng & Shen, Junjie & Kosonen, Risto, 2019. "Dynamic modeling of liquid-desiccant regenerator based on a state–space method," Applied Energy, Elsevier, vol. 240(C), pages 744-753.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:140:y:2017:i:p1:p:240-252. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.