IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v187y2019ics0360544219316664.html
   My bibliography  Save this article

Theoretical analysis of exergy destruction and exergy flow in direct contact process between humid air and water/liquid desiccant solution

Author

Listed:
  • Zhang, Lun
  • Song, Xia
  • Zhang, Xiaosong

Abstract

Direct contact between humid air and water/liquid desiccant (LD) solution is common in air-conditioning systems, where transfer (heat/mass) and conversion (evaporation/condensation) processes occur. This work analyzes these processes using exergy theory and a two-film model. The exergy flow and exergy destruction of heat transfer and mass transfer can be expressed using a unified exergetic expression and depicted by a psychrometric chart. Results show that the equivalent air film of the water/solution is a medium for exergy flow and is thus used to determine the exergy change of the water/solution. Direct evaporative cooling and condensation dehumidification are two representative cases between humid air and water. In the former, the thermal exergy and humid exergy both flow from the humid air to water, where exergy destruction and conversion of the humid exergy into thermal exergy are inevitable. In the latter, thermal and humid exergy flows are all reversed. Dehumidification and regeneration are two crucial and reversed processes between the humid air and solution. The concentration exergy of the solution is involved in the thermal and humid exergy flows. The solution exports its concentration exergy to complete the exergy flows during dehumidification, and it obtains the concentration exergy from exergy flows during regeneration.

Suggested Citation

  • Zhang, Lun & Song, Xia & Zhang, Xiaosong, 2019. "Theoretical analysis of exergy destruction and exergy flow in direct contact process between humid air and water/liquid desiccant solution," Energy, Elsevier, vol. 187(C).
  • Handle: RePEc:eee:energy:v:187:y:2019:i:c:s0360544219316664
    DOI: 10.1016/j.energy.2019.115976
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219316664
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.115976?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abdul-Wahab, S.A. & Zurigat, Y.H. & Abu-Arabi, M.K., 2004. "Predictions of moisture removal rate and dehumidification effectiveness for structured liquid desiccant air dehumidifier," Energy, Elsevier, vol. 29(1), pages 19-34.
    2. Song, Xia & Zhang, Lun & Zhang, Xiaosong, 2018. "NTUm-based optimization of heat or heat pump driven liquid desiccant dehumidification systems regenerated by fresh air or return air," Energy, Elsevier, vol. 158(C), pages 269-280.
    3. Su, Bosheng & Han, Wei & Sui, Jun & Jin, Hongguang, 2017. "A two-stage liquid desiccant dehumidification system by the cascade utilization of low-temperature heat for industrial applications," Applied Energy, Elsevier, vol. 207(C), pages 643-653.
    4. Mei, L. & Dai, Y.J., 2008. "A technical review on use of liquid-desiccant dehumidification for air-conditioning application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 662-689, April.
    5. Xiong, Z.Q. & Dai, Y.J. & Wang, R.Z., 2010. "Development of a novel two-stage liquid desiccant dehumidification system assisted by CaCl2 solution using exergy analysis method," Applied Energy, Elsevier, vol. 87(5), pages 1495-1504, May.
    6. Khalid Ahmed, C.S & Gandhidasan, P & Zubair, S.M & Al-Farayedhi, A.A, 1998. "Exergy analysis of a liquid-desiccant-based, hybrid air-conditioning system," Energy, Elsevier, vol. 23(1), pages 51-59.
    7. Xie, Ying & Zhang, Tao & Liu, Xiaohua, 2016. "Performance investigation of a counter-flow heat pump driven liquid desiccant dehumidification system," Energy, Elsevier, vol. 115(P1), pages 446-457.
    8. Razmara, M. & Maasoumy, M. & Shahbakhti, M. & Robinett, R.D., 2015. "Optimal exergy control of building HVAC system," Applied Energy, Elsevier, vol. 156(C), pages 555-565.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Qinling & Liu, Xiaohua & Zhang, Tao & Xie, Ying, 2020. "Performance optimization of a heat pump driven liquid desiccant dehumidification system using exergy analysis," Energy, Elsevier, vol. 204(C).
    2. Guan, Bowen & Zhang, Tao & Jun, Liu & Liu, Xiaohua, 2020. "Exergy analysis and performance improvement of liquid-desiccant deep-dehumidification system: An engineering case study," Energy, Elsevier, vol. 196(C).
    3. Dai, Yuze & Liu, Feng & Sui, Jun & Wang, Dandan & Han, Wei & Jin, Hongguang, 2020. "Hybrid liquid desiccant air-conditioning system combined with marine aerosol removal driven by low-temperature heat source," Applied Energy, Elsevier, vol. 275(C).
    4. Qu, Jinghui & Li, Mingjian & He, Chang & Zhang, BingJian & Chen, QingLin & Ren, Jingzheng, 2022. "Deciphering the optimal exergy field in closed-wet cooling towers using Bi-level reduced-order models," Energy, Elsevier, vol. 238(PA).
    5. Aixiang Xu & Mengjin Xu & Nan Xie & Yawen Xiong & Junze Huang & Yingjie Cai & Zhiqiang Liu & Sheng Yang, 2021. "Thermodynamic Analysis of a Hybrid System Coupled Cooling, Heating and Liquid Dehumidification Powered by Geothermal Energy," Energies, MDPI, vol. 14(19), pages 1-21, September.
    6. Saedpanah, Ehsan & Pasdarshahri, Hadi, 2021. "Performance assessment of hybrid desiccant air conditioning systems: A dynamic approach towards achieving optimum 3E solution across the lifespan," Energy, Elsevier, vol. 234(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Chenjiyu & Li, Xianting & Zheng, Gonghang, 2022. "Optimizing air conditioning systems by considering the grades of sensible and latent heat loads," Applied Energy, Elsevier, vol. 322(C).
    2. Zhang, Lun & Wei, Hongyang & Zhang, Xiaosong, 2017. "Theoretical analysis of heat and mass transfer characteristics of a counter-flow packing tower and liquid desiccant dehumidification systems based on entransy theory," Energy, Elsevier, vol. 141(C), pages 661-672.
    3. Liu, Wei & Gong, Yanfeng & Niu, Xiaofeng & Shen, Junjie & Kosonen, Risto, 2019. "Dynamic modeling of liquid-desiccant regenerator based on a state–space method," Applied Energy, Elsevier, vol. 240(C), pages 744-753.
    4. Wen, Tao & Lu, Lin, 2019. "A review of correlations and enhancement approaches for heat and mass transfer in liquid desiccant dehumidification system," Applied Energy, Elsevier, vol. 239(C), pages 757-784.
    5. Enteria, Napoleon & Yoshino, Hiroshi & Mochida, Akashi, 2013. "Review of the advances in open-cycle absorption air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 265-289.
    6. Song, Xia & Zhang, Lun & Zhang, Xiaosong, 2019. "Analysis of the temperatures of heating and cooling sources and the air states in liquid desiccant dehumidification systems regenerated by return air," Energy, Elsevier, vol. 168(C), pages 651-661.
    7. Giampieri, Alessandro & Ma, Zhiwei & Ling-Chin, Janie & Bao, Huashan & Smallbone, Andrew J. & Roskilly, Anthony Paul, 2022. "Liquid desiccant dehumidification and regeneration process: Advancing correlations for moisture and enthalpy effectiveness," Applied Energy, Elsevier, vol. 314(C).
    8. Su, Wei & Lu, Zhifei & She, Xiaohui & Zhou, Junming & Wang, Feng & Sun, Bo & Zhang, Xiaosong, 2022. "Liquid desiccant regeneration for advanced air conditioning: A comprehensive review on desiccant materials, regenerators, systems and improvement technologies," Applied Energy, Elsevier, vol. 308(C).
    9. Yin, Yonggao & Qian, Junfei & Zhang, Xiaosong, 2014. "Recent advancements in liquid desiccant dehumidification technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 38-52.
    10. Wen, Tao & Luo, Yimo & Wang, Meng & She, Xiaohui, 2021. "Comparative study on the liquid desiccant dehumidification performance of lithium chloride and potassium formate," Renewable Energy, Elsevier, vol. 167(C), pages 841-852.
    11. Dai, Yuze & Liu, Feng & Sui, Jun & Wang, Dandan & Han, Wei & Jin, Hongguang, 2020. "Hybrid liquid desiccant air-conditioning system combined with marine aerosol removal driven by low-temperature heat source," Applied Energy, Elsevier, vol. 275(C).
    12. Cui, X. & Islam, M.R. & Mohan, B. & Chua, K.J., 2016. "Theoretical analysis of a liquid desiccant based indirect evaporative cooling system," Energy, Elsevier, vol. 95(C), pages 303-312.
    13. Gurubalan, A. & Maiya, M.P. & Geoghegan, Patrick J., 2019. "A comprehensive review of liquid desiccant air conditioning system," Applied Energy, Elsevier, vol. 254(C).
    14. Wang, Xinli & Cai, Wenjian & Lu, Jiangang & Sun, Youxian & Ding, Xudong, 2013. "A hybrid dehumidifier model for real-time performance monitoring, control and optimization in liquid desiccant dehumidification system," Applied Energy, Elsevier, vol. 111(C), pages 449-455.
    15. Xiong, Z.Q. & Dai, Y.J. & Wang, R.Z., 2010. "Development of a novel two-stage liquid desiccant dehumidification system assisted by CaCl2 solution using exergy analysis method," Applied Energy, Elsevier, vol. 87(5), pages 1495-1504, May.
    16. Abdel-Salam, Ahmed H. & Simonson, Carey J., 2016. "State-of-the-art in liquid desiccant air conditioning equipment and systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1152-1183.
    17. Su, Xing & Geng, Yining & Huang, Lei & Li, Shangao & Wang, Qinbao & Xu, Zehan & Tian, Shaochen, 2024. "Review on dehumidification technology in low and extremely low humidity industrial environments," Energy, Elsevier, vol. 302(C).
    18. Abdel-Salam, Mohamed R.H. & Fauchoux, Melanie & Ge, Gaoming & Besant, Robert W. & Simonson, Carey J., 2014. "Expected energy and economic benefits, and environmental impacts for liquid-to-air membrane energy exchangers (LAMEEs) in HVAC systems: A review," Applied Energy, Elsevier, vol. 127(C), pages 202-218.
    19. Rafique, M. Mujahid & Gandhidasan, P. & Bahaidarah, Haitham M.S., 2016. "Liquid desiccant materials and dehumidifiers – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 179-195.
    20. Zhang, Qinling & Liu, Xiaohua & Zhang, Tao & Xie, Ying, 2020. "Performance optimization of a heat pump driven liquid desiccant dehumidification system using exergy analysis," Energy, Elsevier, vol. 204(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:187:y:2019:i:c:s0360544219316664. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.