A study on combustion of oil palm empty fruit bunch in a fluidized bed using alternative bed materials: Performance, emissions, and time-domain changes in the bed condition
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2016.05.063
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Arromdee, Porametr & Kuprianov, Vladimir I., 2012. "Combustion of peanut shells in a cone-shaped bubbling fluidized-bed combustor using alumina as the bed material," Applied Energy, Elsevier, vol. 97(C), pages 470-482.
- Yu, Chunjiang & Qin, Jianguang & Nie, Hu & Fang, Mengxiang & Luo, Zhongyang, 2011. "Experimental research on agglomeration in straw-fired fluidized beds," Applied Energy, Elsevier, vol. 88(12), pages 4534-4543.
- Kuprianov, Vladimir I. & Kaewklum, Rachadaporn & Sirisomboon, Kasama & Arromdee, Porametr & Chakritthakul, Songpol, 2010. "Combustion and emission characteristics of a swirling fluidized-bed combustor burning moisturized rice husk," Applied Energy, Elsevier, vol. 87(9), pages 2899-2906, September.
- Perejón, Antonio & Romeo, Luis M. & Lara, Yolanda & Lisbona, Pilar & Martínez, Ana & Valverde, Jose Manuel, 2016. "The Calcium-Looping technology for CO2 capture: On the important roles of energy integration and sorbent behavior," Applied Energy, Elsevier, vol. 162(C), pages 787-807.
- Konsomboon, Supatchaya & Pipatmanomai, Suneerat & Madhiyanon, Thanid & Tia, Suvit, 2011. "Effect of kaolin addition on ash characteristics of palm empty fruit bunch (EFB) upon combustion," Applied Energy, Elsevier, vol. 88(1), pages 298-305, January.
- Kouprianov, V. I. & Permchart, W., 2003. "Emissions from a conical FBC fired with a biomass fuel," Applied Energy, Elsevier, vol. 74(3-4), pages 383-392, March.
- Sun, Zhi-Ao & Jin, Bao-Sheng & Zhang, Ming-Yao & Liu, Ren-Ping & Zhang, Yong, 2008. "Experimental study on cotton stalk combustion in a circulating fluidized bed," Applied Energy, Elsevier, vol. 85(11), pages 1027-1040, November.
- Youssef, Mahmoud A. & Wahid, Seddik S. & Mohamed, Maher A. & Askalany, Ahmed A., 2009. "Experimental study on Egyptian biomass combustion in circulating fluidized bed," Applied Energy, Elsevier, vol. 86(12), pages 2644-2650, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wiranarongkorn, Kunlanan & Phajam, Picharporn & Im-orb, Karittha & Saebea, Dang & Arpornwichanop, Amornchai, 2021. "Assessment and analysis of multi-biomass fuels for sustainable electricity generation," Renewable Energy, Elsevier, vol. 180(C), pages 1405-1418.
- Yang, Yu & Wang, Quanhai & Lu, Xiaofeng & Li, Jianbo & Liu, Zhuo, 2018. "Combustion behaviors and pollutant emission characteristics of low calorific oil shale and its semi-coke in a lab-scale fluidized bed combustor," Applied Energy, Elsevier, vol. 211(C), pages 631-638.
- Darmawan, Arif & Budianto, Dwika & Aziz, Muhammad & Tokimatsu, Koji, 2017. "Retrofitting existing coal power plants through cofiring with hydrothermally treated empty fruit bunch and a novel integrated system," Applied Energy, Elsevier, vol. 204(C), pages 1138-1147.
- Yu Jiang & Kyeong-Hoon Park & Chung-Hwan Jeon, 2020. "Feasibility Study of Co-Firing of Torrefied Empty Fruit Bunch and Coal through Boiler Simulation," Energies, MDPI, vol. 13(12), pages 1-27, June.
- Sher, Farooq & Pans, Miguel A. & Afilaka, Daniel T. & Sun, Chenggong & Liu, Hao, 2017. "Experimental investigation of woody and non-woody biomass combustion in a bubbling fluidised bed combustor focusing on gaseous emissions and temperature profiles," Energy, Elsevier, vol. 141(C), pages 2069-2080.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Arromdee, Porametr & Kuprianov, Vladimir I., 2012. "Combustion of peanut shells in a cone-shaped bubbling fluidized-bed combustor using alumina as the bed material," Applied Energy, Elsevier, vol. 97(C), pages 470-482.
- Kuprianov, Vladimir I. & Kaewklum, Rachadaporn & Sirisomboon, Kasama & Arromdee, Porametr & Chakritthakul, Songpol, 2010. "Combustion and emission characteristics of a swirling fluidized-bed combustor burning moisturized rice husk," Applied Energy, Elsevier, vol. 87(9), pages 2899-2906, September.
- Kuprianov, Vladimir I. & Kaewklum, Rachadaporn & Chakritthakul, Songpol, 2011. "Effects of operating conditions and fuel properties on emission performance and combustion efficiency of a swirling fluidized-bed combustor fired with a biomass fuel," Energy, Elsevier, vol. 36(4), pages 2038-2048.
- Zhou, Chunguang & Rosén, Christer & Engvall, Klas, 2016. "Biomass oxygen/steam gasification in a pressurized bubbling fluidized bed: Agglomeration behavior," Applied Energy, Elsevier, vol. 172(C), pages 230-250.
- Said, N. & El-Shatoury, S.A. & Díaz, L.F. & Zamorano, M., 2013. "Quantitative appraisal of biomass resources and their energy potential in Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 84-91.
- Duan, Feng & Liu, Jian & Chyang, Chien-Song & Hu, Chun-Hsuan & Tso, Jim, 2013. "Combustion behavior and pollutant emission characteristics of RDF (refuse derived fuel) and sawdust in a vortexing fluidized bed combustor," Energy, Elsevier, vol. 57(C), pages 421-426.
- Wagner, Katharina & Häggström, Gustav & Skoglund, Nils & Priscak, Juraj & Kuba, Matthias & Öhman, Marcus & Hofbauer, Hermann, 2019. "Layer formation mechanism of K-feldspar in bubbling fluidized bed combustion of phosphorus-lean and phosphorus-rich residual biomass," Applied Energy, Elsevier, vol. 248(C), pages 545-554.
- Michalski, Sebastian & Hanak, Dawid P. & Manovic, Vasilije, 2020. "Advanced power cycles for coal-fired power plants based on calcium looping combustion: A techno-economic feasibility assessment," Applied Energy, Elsevier, vol. 269(C).
- Youssef, Mahmoud A. & Wahid, Seddik S. & Mohamed, Maher A. & Askalany, Ahmed A., 2009. "Experimental study on Egyptian biomass combustion in circulating fluidized bed," Applied Energy, Elsevier, vol. 86(12), pages 2644-2650, December.
- Abanades, Stéphane & André, Laurie, 2018. "Design and demonstration of a high temperature solar-heated rotary tube reactor for continuous particles calcination," Applied Energy, Elsevier, vol. 212(C), pages 1310-1320.
- Wang, Liang & Skreiberg, Øyvind & Becidan, Michael & Li, Hailong, 2016. "Investigation of rye straw ash sintering characteristics and the effect of additives," Applied Energy, Elsevier, vol. 162(C), pages 1195-1204.
- Karakosta, Charikleia & Psarras, John, 2013. "Understanding CDM potential in the Mediterranean basin: A country assessment of Egypt and Morocco," Energy Policy, Elsevier, vol. 60(C), pages 827-839.
- Duan, Lunbo & Liu, Daoyin & Chen, Xiaoping & Zhao, Changsui, 2012. "Fly ash recirculation by bottom feeding on a circulating fluidized bed boiler co-burning coal sludge and coal," Applied Energy, Elsevier, vol. 95(C), pages 295-299.
- Sunku Prasad, J. & Muthukumar, P. & Desai, Fenil & Basu, Dipankar N. & Rahman, Muhammad M., 2019. "A critical review of high-temperature reversible thermochemical energy storage systems," Applied Energy, Elsevier, vol. 254(C).
- Halliday, Cameron & Hatton, T. Alan, 2020. "The potential of molten metal oxide sorbents for carbon capture at high temperature: Conceptual design," Applied Energy, Elsevier, vol. 280(C).
- Alexander García-Mariaca & Eva Llera-Sastresa, 2021. "Review on Carbon Capture in ICE Driven Transport," Energies, MDPI, vol. 14(21), pages 1-30, October.
- Živković, Luka A. & Pohar, Andrej & Likozar, Blaž & Nikačević, Nikola M., 2016. "Kinetics and reactor modeling for CaO sorption-enhanced high-temperature water–gas shift (SE–WGS) reaction for hydrogen production," Applied Energy, Elsevier, vol. 178(C), pages 844-855.
- Sandberg, Jan & Karlsson, Christer & Fdhila, Rebei Bel, 2011. "A 7Â year long measurement period investigating the correlation of corrosion, deposit and fuel in a biomass fired circulated fluidized bed boiler," Applied Energy, Elsevier, vol. 88(1), pages 99-110, January.
- Song, Han & Starfelt, Fredrik & Daianova, Lilia & Yan, Jinyue, 2012. "Influence of drying process on the biomass-based polygeneration system of bioethanol, power and heat," Applied Energy, Elsevier, vol. 90(1), pages 32-37.
- Lisbona, Pilar & Bailera, Manuel & Hills, Thomas & Sceats, Mark & Díez, Luis I. & Romeo, Luis M., 2020. "Energy consumption minimization for a solar lime calciner operating in a concentrated solar power plant for thermal energy storage," Renewable Energy, Elsevier, vol. 156(C), pages 1019-1027.
More about this item
Keywords
Empty fruit bunch; Fluidized-bed combustion; Alternative bed materials; Bed agglomeration prevention;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:176:y:2016:i:c:p:34-48. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.