IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v236y2019icp101-116.html
   My bibliography  Save this article

A hybrid building thermal modeling approach for predicting temperatures in typical, detached, two-story houses

Author

Listed:
  • Cui, Borui
  • Fan, Cheng
  • Munk, Jeffrey
  • Mao, Ning
  • Xiao, Fu
  • Dong, Jin
  • Kuruganti, Teja

Abstract

Within the residential building sector, the air-conditioning (AC) load is the main target for peak load shifting and reduction since it is the largest contributor to peak demand. By leveraging its power flexibility, residential AC is a good candidate to provide building demand response and peak load shifting. For realization of accurate and reliable control of AC loads, a building thermal model, which characterizes the properties of a building’s envelope and its thermal mass, is an essential component for accurate indoor temperature or cooling/heating demand prediction. Building thermal models include two types: “Forward” and “Data-Driven”. Due to time-saving and cost-effective characteristics, different data-driven models have been developed in a number of research studies. However, few developed models can predict temperatures in respective zones of a multiple-zone building with an open air path between zones e.g., an open stairwell connecting two floors of a home. In this research, a novel hybrid modeling approach is proposed to predict the average indoor air temperatures of both the upstairs and downstairs. This “hybrid” solution integrates both gray-box, i.e. RC model and black-box models. A developed RC model is used to predict the building mean temperature, and black-box model, in which the supervised machine learning algorithms are leveraged, is used to predict the temperature difference between the downstairs and upstairs. Compared with the measured data from a real house, the results obtained have acceptable/satisfactory accuracy. The method proposed in this study integrates the advantages of black-box and gray-box modeling. It can be used as a reliable alternative to predict the average temperatures in respective floors of typical detached two-story houses.

Suggested Citation

  • Cui, Borui & Fan, Cheng & Munk, Jeffrey & Mao, Ning & Xiao, Fu & Dong, Jin & Kuruganti, Teja, 2019. "A hybrid building thermal modeling approach for predicting temperatures in typical, detached, two-story houses," Applied Energy, Elsevier, vol. 236(C), pages 101-116.
  • Handle: RePEc:eee:appene:v:236:y:2019:i:c:p:101-116
    DOI: 10.1016/j.apenergy.2018.11.077
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918317938
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.11.077?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luthander, Rasmus & Widén, Joakim & Nilsson, Daniel & Palm, Jenny, 2015. "Photovoltaic self-consumption in buildings: A review," Applied Energy, Elsevier, vol. 142(C), pages 80-94.
    2. Zhao, Hai-xiang & Magoulès, Frédéric, 2012. "A review on the prediction of building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3586-3592.
    3. Alimohammadisagvand, Behrang & Jokisalo, Juha & Kilpeläinen, Simo & Ali, Mubbashir & Sirén, Kai, 2016. "Cost-optimal thermal energy storage system for a residential building with heat pump heating and demand response control," Applied Energy, Elsevier, vol. 174(C), pages 275-287.
    4. Patteeuw, Dieter & Reynders, Glenn & Bruninx, Kenneth & Protopapadaki, Christina & Delarue, Erik & D’haeseleer, William & Saelens, Dirk & Helsen, Lieve, 2015. "CO2-abatement cost of residential heat pumps with active demand response: demand- and supply-side effects," Applied Energy, Elsevier, vol. 156(C), pages 490-501.
    5. Hou, Zhijian & Lian, Zhiwei & Yao, Ye & Yuan, Xinjian, 2006. "Cooling-load prediction by the combination of rough set theory and an artificial neural-network based on data-fusion technique," Applied Energy, Elsevier, vol. 83(9), pages 1033-1046, September.
    6. Fiorentini, Massimo & Wall, Josh & Ma, Zhenjun & Braslavsky, Julio H. & Cooper, Paul, 2017. "Hybrid model predictive control of a residential HVAC system with on-site thermal energy generation and storage," Applied Energy, Elsevier, vol. 187(C), pages 465-479.
    7. Edwards, Richard E. & New, Joshua & Parker, Lynne E. & Cui, Borui & Dong, Jin, 2017. "Constructing large scale surrogate models from big data and artificial intelligence," Applied Energy, Elsevier, vol. 202(C), pages 685-699.
    8. Cui, Borui & Gao, Dian-ce & Xiao, Fu & Wang, Shengwei, 2017. "Model-based optimal design of active cool thermal energy storage for maximal life-cycle cost saving from demand management in commercial buildings," Applied Energy, Elsevier, vol. 201(C), pages 382-396.
    9. Pavlak, Gregory S. & Henze, Gregor P. & Cushing, Vincent J., 2015. "Evaluating synergistic effect of optimally controlling commercial building thermal mass portfolios," Energy, Elsevier, vol. 84(C), pages 161-176.
    10. Hurtado, L.A. & Rhodes, J.D. & Nguyen, P.H. & Kamphuis, I.G. & Webber, M.E., 2017. "Quantifying demand flexibility based on structural thermal storage and comfort management of non-residential buildings: A comparison between hot and cold climate zones," Applied Energy, Elsevier, vol. 195(C), pages 1047-1054.
    11. Fan, Cheng & Xiao, Fu & Zhao, Yang, 2017. "A short-term building cooling load prediction method using deep learning algorithms," Applied Energy, Elsevier, vol. 195(C), pages 222-233.
    12. Fan, Cheng & Xiao, Fu & Wang, Shengwei, 2014. "Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques," Applied Energy, Elsevier, vol. 127(C), pages 1-10.
    13. Xue, Xue & Wang, Shengwei & Yan, Chengchu & Cui, Borui, 2015. "A fast chiller power demand response control strategy for buildings connected to smart grid," Applied Energy, Elsevier, vol. 137(C), pages 77-87.
    14. Amasyali, Kadir & El-Gohary, Nora M., 2018. "A review of data-driven building energy consumption prediction studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1192-1205.
    15. Cao, Sunliang & Sirén, Kai, 2014. "Impact of simulation time-resolution on the matching of PV production and household electric demand," Applied Energy, Elsevier, vol. 128(C), pages 192-208.
    16. Henze, Gregor P. & Pavlak, Gregory S. & Florita, Anthony R. & Dodier, Robert H. & Hirsch, Adam I., 2015. "An energy signal tool for decision support in building energy systems," Applied Energy, Elsevier, vol. 138(C), pages 51-70.
    17. Cole, Wesley J. & Rhodes, Joshua D. & Gorman, William & Perez, Krystian X. & Webber, Michael E. & Edgar, Thomas F., 2014. "Community-scale residential air conditioning control for effective grid management," Applied Energy, Elsevier, vol. 130(C), pages 428-436.
    18. Cui, Borui & Gao, Dian-ce & Wang, Shengwei & Xue, Xue, 2015. "Effectiveness and life-cycle cost-benefit analysis of active cold storages for building demand management for smart grid applications," Applied Energy, Elsevier, vol. 147(C), pages 523-535.
    19. Álvarez, Servando & Cabeza, Luisa F. & Ruiz-Pardo, Alvaro & Castell, Albert & Tenorio, José Antonio, 2013. "Building integration of PCM for natural cooling of buildings," Applied Energy, Elsevier, vol. 109(C), pages 514-522.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
    2. Zhang, Xu & Sun, Yongjun & Gao, Dian-ce & Zou, Wenke & Fu, Jianping & Ma, Xiaowen, 2022. "Similarity-based grouping method for evaluation and optimization of dataset structure in machine-learning based short-term building cooling load prediction without measurable occupancy information," Applied Energy, Elsevier, vol. 327(C).
    3. Mohammed Olama & Jin Dong & Isha Sharma & Yaosuo Xue & Teja Kuruganti, 2020. "Frequency Analysis of Solar PV Power to Enable Optimal Building Load Control," Energies, MDPI, vol. 13(18), pages 1-18, September.
    4. Lara Ramadan & Isam Shahrour & Hussein Mroueh & Fadi Hage Chehade, 2021. "Use of Machine Learning Methods for Indoor Temperature Forecasting," Future Internet, MDPI, vol. 13(10), pages 1-18, September.
    5. Yiling Zhang & Jin Dong, 2022. "Building Load Control Using Distributionally Robust Chance-Constrained Programs with Right-Hand Side Uncertainty and the Risk-Adjustable Variants," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1531-1547, May.
    6. Dewangan, Chaman Lal & Vijayan, Vineeth & Shukla, Devesh & Chakrabarti, S. & Singh, S.N. & Sharma, Ankush & Hossain, Md. Alamgir, 2023. "An improved decentralized scheme for incentive-based demand response from residential customers," Energy, Elsevier, vol. 284(C).
    7. Wang, Xiaoyu & Tian, Shuai & Ren, Jiawen & Jin, Xing & Zhou, Xin & Shi, Xing, 2024. "A novel resistance-capacitance model for evaluating urban building energy loads considering construction boundary heterogeneity," Applied Energy, Elsevier, vol. 361(C).
    8. Jefferson Brooks & Ana Rivera & Miguel Chen Austin & Nathalia Tejedor-Flores, 2022. "A Machine Learning-Based Approach to Estimate Energy Flows of the Mangrove Forest: The Case of Panama Bay," Sustainability, MDPI, vol. 15(1), pages 1-20, December.
    9. Velander, Taylor B. & Joyce, Michael J. & Kujawa, Angela M. & Sanders, Robert L. & Keenlance, Paul W. & Moen, Ron A., 2023. "A dynamic thermal model for predicting internal temperature of tree cavities and nest boxes," Ecological Modelling, Elsevier, vol. 478(C).
    10. Huang, Sen & Lin, Yashen & Chinde, Venkatesh & Ma, Xu & Lian, Jianming, 2021. "Simulation-based performance evaluation of model predictive control for building energy systems," Applied Energy, Elsevier, vol. 281(C).
    11. Li, Yanfei & O'Neill, Zheng & Zhang, Liang & Chen, Jianli & Im, Piljae & DeGraw, Jason, 2021. "Grey-box modeling and application for building energy simulations - A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    12. Wei, Ziqing & Ren, Fukang & Zhu, Yikang & Yue, Bao & Ding, Yunxiao & Zheng, Chunyuan & Li, Bin & Zhai, Xiaoqiang, 2022. "Data-driven two-step identification of building thermal characteristics: A case study of office building," Applied Energy, Elsevier, vol. 326(C).
    13. Pal, Monalisa & Alyafi, Amr Alzouhri & Ploix, Stéphane & Reignier, Patrick & Bandyopadhyay, Sanghamitra, 2019. "Unmasking the causal relationships latent in the interplay between occupant’s actions and indoor ambience: A building energy management outlook," Applied Energy, Elsevier, vol. 238(C), pages 1452-1470.
    14. Joe, Jaewan & Im, Piljae & Cui, Borui & Dong, Jin, 2023. "Model-based predictive control of multi-zone commercial building with a lumped building modelling approach," Energy, Elsevier, vol. 263(PA).
    15. César Benavente-Peces & Nisrine Ibadah, 2020. "Buildings Energy Efficiency Analysis and Classification Using Various Machine Learning Technique Classifiers," Energies, MDPI, vol. 13(13), pages 1-24, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Liang & Wen, Jin & Li, Yanfei & Chen, Jianli & Ye, Yunyang & Fu, Yangyang & Livingood, William, 2021. "A review of machine learning in building load prediction," Applied Energy, Elsevier, vol. 285(C).
    2. Wang, Zhe & Hong, Tianzhen & Piette, Mary Ann, 2020. "Building thermal load prediction through shallow machine learning and deep learning," Applied Energy, Elsevier, vol. 263(C).
    3. Ren, Haoshan & Sun, Yongjun & Albdoor, Ahmed K. & Tyagi, V.V. & Pandey, A.K. & Ma, Zhenjun, 2021. "Improving energy flexibility of a net-zero energy house using a solar-assisted air conditioning system with thermal energy storage and demand-side management," Applied Energy, Elsevier, vol. 285(C).
    4. Jason Runge & Radu Zmeureanu, 2019. "Forecasting Energy Use in Buildings Using Artificial Neural Networks: A Review," Energies, MDPI, vol. 12(17), pages 1-27, August.
    5. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
    6. Venkatraj, V. & Dixit, M.K., 2022. "Challenges in implementing data-driven approaches for building life cycle energy assessment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    7. Fan, Cheng & Sun, Yongjun & Xiao, Fu & Ma, Jie & Lee, Dasheng & Wang, Jiayuan & Tseng, Yen Chieh, 2020. "Statistical investigations of transfer learning-based methodology for short-term building energy predictions," Applied Energy, Elsevier, vol. 262(C).
    8. Tang, Hong & Wang, Shengwei & Li, Hangxin, 2021. "Flexibility categorization, sources, capabilities and technologies for energy-flexible and grid-responsive buildings: State-of-the-art and future perspective," Energy, Elsevier, vol. 219(C).
    9. Hu, Maomao & Xiao, Fu & Wang, Shengwei, 2021. "Neighborhood-level coordination and negotiation techniques for managing demand-side flexibility in residential microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    10. Wang, Zeyu & Liu, Jian & Zhang, Yuanxin & Yuan, Hongping & Zhang, Ruixue & Srinivasan, Ravi S., 2021. "Practical issues in implementing machine-learning models for building energy efficiency: Moving beyond obstacles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    11. Adam Kula & Albert Smalcerz & Maciej Sajkowski & Zygmunt Kamiński, 2021. "Analysis of Office Rooms Energy Consumption Data in Respect to Meteorological and Direct Sun Exposure Conditions," Energies, MDPI, vol. 14(22), pages 1-20, November.
    12. Amasyali, Kadir & El-Gohary, Nora M., 2018. "A review of data-driven building energy consumption prediction studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1192-1205.
    13. Chou, Jui-Sheng & Tran, Duc-Son, 2018. "Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders," Energy, Elsevier, vol. 165(PB), pages 709-726.
    14. Anand Krishnan Prakash & Susu Xu & Ram Rajagopal & Hae Young Noh, 2018. "Robust Building Energy Load Forecasting Using Physically-Based Kernel Models," Energies, MDPI, vol. 11(4), pages 1-21, April.
    15. Li, Sihui & Peng, Jinqing & Zou, Bin & Li, Bojia & Lu, Chujie & Cao, Jingyu & Luo, Yimo & Ma, Tao, 2021. "Zero energy potential of photovoltaic direct-driven air conditioners with considering the load flexibility of air conditioners," Applied Energy, Elsevier, vol. 304(C).
    16. Wang, Lan & Lee, Eric W.M. & Yuen, Richard K.K., 2018. "Novel dynamic forecasting model for building cooling loads combining an artificial neural network and an ensemble approach," Applied Energy, Elsevier, vol. 228(C), pages 1740-1753.
    17. Sunil Kumar Mohapatra & Sushruta Mishra & Hrudaya Kumar Tripathy & Akash Kumar Bhoi & Paolo Barsocchi, 2021. "A Pragmatic Investigation of Energy Consumption and Utilization Models in the Urban Sector Using Predictive Intelligence Approaches," Energies, MDPI, vol. 14(13), pages 1-28, June.
    18. Razak Olu-Ajayi & Hafiz Alaka & Hakeem Owolabi & Lukman Akanbi & Sikiru Ganiyu, 2023. "Data-Driven Tools for Building Energy Consumption Prediction: A Review," Energies, MDPI, vol. 16(6), pages 1-20, March.
    19. Xiao, Tong & Xu, Peng & He, Ruikai & Sha, Huajing, 2022. "Status quo and opportunities for building energy prediction in limited data Context—Overview from a competition," Applied Energy, Elsevier, vol. 305(C).
    20. Bampoulas, Adamantios & Pallonetto, Fabiano & Mangina, Eleni & Finn, Donal P., 2022. "An ensemble learning-based framework for assessing the energy flexibility of residential buildings with multicomponent energy systems," Applied Energy, Elsevier, vol. 315(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:236:y:2019:i:c:p:101-116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.