IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v233-234y2019ip764-775.html
   My bibliography  Save this article

Energy flexibility of a nearly zero-energy building with weather predictive control on a convective building energy system and evaluated with different metrics

Author

Listed:
  • Liu, Mingzhe
  • Heiselberg, Per

Abstract

The implementation of energy flexibility using thermal storage of building structure is one of the key solutions for buildings in contributing to a stable exploitation and distribution of renewable energy. The objective of this study is to investigate the performance of energy flexibility of a nearly zero-energy building with weather predictive control of a convective building energy system. Analysis and comparisons have been conducted on different control strategies to evaluate the influence of the strategies on the energy flexibility. The investigated control strategies of a heating and cooling system include: normal control (reference case), adjustment of set-points for heating and cooling and adjustment of set-points together with a rule-based weather predictive control strategy.

Suggested Citation

  • Liu, Mingzhe & Heiselberg, Per, 2019. "Energy flexibility of a nearly zero-energy building with weather predictive control on a convective building energy system and evaluated with different metrics," Applied Energy, Elsevier, vol. 233, pages 764-775.
  • Handle: RePEc:eee:appene:v:233-234:y:2019:i::p:764-775
    DOI: 10.1016/j.apenergy.2018.10.070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918316386
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.10.070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Junker, Rune Grønborg & Azar, Armin Ghasem & Lopes, Rui Amaral & Lindberg, Karen Byskov & Reynders, Glenn & Relan, Rishi & Madsen, Henrik, 2018. "Characterizing the energy flexibility of buildings and districts," Applied Energy, Elsevier, vol. 225(C), pages 175-182.
    2. De Coninck, Roel & Helsen, Lieve, 2016. "Quantification of flexibility in buildings by cost curves – Methodology and application," Applied Energy, Elsevier, vol. 162(C), pages 653-665.
    3. Ayón, X. & Gruber, J.K. & Hayes, B.P. & Usaola, J. & Prodanović, M., 2017. "An optimal day-ahead load scheduling approach based on the flexibility of aggregate demands," Applied Energy, Elsevier, vol. 198(C), pages 1-11.
    4. Reynders, Glenn & Diriken, Jan & Saelens, Dirk, 2017. "Generic characterization method for energy flexibility: Applied to structural thermal storage in residential buildings," Applied Energy, Elsevier, vol. 198(C), pages 192-202.
    5. Li, Rongling & Dane, Gamze & Finck, Christian & Zeiler, Wim, 2017. "Are building users prepared for energy flexible buildings?—A large-scale survey in the Netherlands," Applied Energy, Elsevier, vol. 203(C), pages 623-634.
    6. Alimohammadisagvand, Behrang & Jokisalo, Juha & Kilpeläinen, Simo & Ali, Mubbashir & Sirén, Kai, 2016. "Cost-optimal thermal energy storage system for a residential building with heat pump heating and demand response control," Applied Energy, Elsevier, vol. 174(C), pages 275-287.
    7. Le Dréau, J. & Heiselberg, P., 2016. "Energy flexibility of residential buildings using short term heat storage in the thermal mass," Energy, Elsevier, vol. 111(C), pages 991-1002.
    8. Li, Pei-Hao & Pye, Steve, 2018. "Assessing the benefits of demand-side flexibility in residential and transport sectors from an integrated energy systems perspective," Applied Energy, Elsevier, vol. 228(C), pages 965-979.
    9. Finck, Christian & Li, Rongling & Kramer, Rick & Zeiler, Wim, 2018. "Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems," Applied Energy, Elsevier, vol. 209(C), pages 409-425.
    10. Lizana, Jesus & Friedrich, Daniel & Renaldi, Renaldi & Chacartegui, Ricardo, 2018. "Energy flexible building through smart demand-side management and latent heat storage," Applied Energy, Elsevier, vol. 230(C), pages 471-485.
    11. Cui, Borui & Gao, Dian-ce & Xiao, Fu & Wang, Shengwei, 2017. "Model-based optimal design of active cool thermal energy storage for maximal life-cycle cost saving from demand management in commercial buildings," Applied Energy, Elsevier, vol. 201(C), pages 382-396.
    12. Hurtado, L.A. & Rhodes, J.D. & Nguyen, P.H. & Kamphuis, I.G. & Webber, M.E., 2017. "Quantifying demand flexibility based on structural thermal storage and comfort management of non-residential buildings: A comparison between hot and cold climate zones," Applied Energy, Elsevier, vol. 195(C), pages 1047-1054.
    13. Andersen, Anders N. & Østergaard, Poul Alberg, 2018. "A method for assessing support schemes promoting flexibility at district energy plants," Applied Energy, Elsevier, vol. 225(C), pages 448-459.
    14. Zhang, Yuna & Augenbroe, Godfried, 2018. "Optimal demand charge reduction for commercial buildings through a combination of efficiency and flexibility measures," Applied Energy, Elsevier, vol. 221(C), pages 180-194.
    15. Salpakari, Jyri & Lund, Peter, 2016. "Optimal and rule-based control strategies for energy flexibility in buildings with PV," Applied Energy, Elsevier, vol. 161(C), pages 425-436.
    16. Razmara, M. & Bharati, G.R. & Hanover, Drew & Shahbakhti, M. & Paudyal, S. & Robinett, R.D., 2017. "Building-to-grid predictive power flow control for demand response and demand flexibility programs," Applied Energy, Elsevier, vol. 203(C), pages 128-141.
    17. Gao, Dian-ce & Sun, Yongjun & Lu, Yuehong, 2015. "A robust demand response control of commercial buildings for smart grid under load prediction uncertainty," Energy, Elsevier, vol. 93(P1), pages 275-283.
    18. Zhang, Yang & Campana, Pietro Elia & Yang, Ying & Stridh, Bengt & Lundblad, Anders & Yan, Jinyue, 2018. "Energy flexibility from the consumer: Integrating local electricity and heat supplies in a building," Applied Energy, Elsevier, vol. 223(C), pages 430-442.
    19. Reihani, Ehsan & Motalleb, Mahdi & Thornton, Matsu & Ghorbani, Reza, 2016. "A novel approach using flexible scheduling and aggregation to optimize demand response in the developing interactive grid market architecture," Applied Energy, Elsevier, vol. 183(C), pages 445-455.
    20. Stinner, Sebastian & Huchtemann, Kristian & Müller, Dirk, 2016. "Quantifying the operational flexibility of building energy systems with thermal energy storages," Applied Energy, Elsevier, vol. 181(C), pages 140-154.
    21. Haider, Haider Tarish & See, Ong Hang & Elmenreich, Wilfried, 2016. "A review of residential demand response of smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 166-178.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Silvia Erba & Lorenzo Pagliano, 2021. "Combining Sufficiency, Efficiency and Flexibility to Achieve Positive Energy Districts Targets," Energies, MDPI, vol. 14(15), pages 1-32, August.
    2. Jennifer Date & José A. Candanedo & Andreas K. Athienitis, 2021. "A Methodology for the Enhancement of the Energy Flexibility and Contingency Response of a Building through Predictive Control of Passive and Active Storage," Energies, MDPI, vol. 14(5), pages 1-28, March.
    3. Pengying Wang & Shuo Zhang, 2022. "Retrofitting Strategies Based on Orthogonal Array Testing to Develop Nearly Zero Energy Buildings," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
    4. Matteo Dongellini & Paolo Valdiserri & Claudia Naldi & Gian Luca Morini, 2020. "The Role of Emitters, Heat Pump Size, and Building Massive Envelope Elements on the Seasonal Energy Performance of Heat Pump-Based Heating Systems," Energies, MDPI, vol. 13(19), pages 1-14, September.
    5. Khalilnejad, Arash & French, Roger H. & Abramson, Alexis R., 2020. "Data-driven evaluation of HVAC operation and savings in commercial buildings," Applied Energy, Elsevier, vol. 278(C).
    6. Karol Bot & Laura Aelenei & Maria da Glória Gomes & Carlos Santos Silva, 2020. "Performance Assessment of a Building Integrated Photovoltaic Thermal System in Mediterranean Climate—A Numerical Simulation Approach," Energies, MDPI, vol. 13(11), pages 1-25, June.
    7. Tang, Hong & Wang, Shengwei & Li, Hangxin, 2021. "Flexibility categorization, sources, capabilities and technologies for energy-flexible and grid-responsive buildings: State-of-the-art and future perspective," Energy, Elsevier, vol. 219(C).
    8. João Tabanêz Patrício & Rui Amaral Lopes & Naim Majdalani & Daniel Aelenei & João Martins, 2023. "Aggregated Use of Energy Flexibility in Office Buildings," Energies, MDPI, vol. 16(2), pages 1-17, January.
    9. Li, Han & Johra, Hicham & de Andrade Pereira, Flavia & Hong, Tianzhen & Le Dréau, Jérôme & Maturo, Anthony & Wei, Mingjun & Liu, Yapan & Saberi-Derakhtenjani, Ali & Nagy, Zoltan & Marszal-Pomianowska,, 2023. "Data-driven key performance indicators and datasets for building energy flexibility: A review and perspectives," Applied Energy, Elsevier, vol. 343(C).
    10. Finck, Christian & Li, Rongling & Zeiler, Wim, 2020. "Optimal control of demand flexibility under real-time pricing for heating systems in buildings: A real-life demonstration," Applied Energy, Elsevier, vol. 263(C).
    11. Wang, Chuyao & Ji, Jie & Yang, Hongxing, 2024. "Day-ahead schedule optimization of household appliances for demand flexibility: Case study on PV/T powered buildings," Energy, Elsevier, vol. 289(C).
    12. Walker, Linus & Hischier, Illias & Schlueter, Arno, 2022. "Scenario-based robustness assessment of building system life cycle performance," Applied Energy, Elsevier, vol. 311(C).
    13. O'Connell, Sarah & Reynders, Glenn & Keane, Marcus M., 2021. "Impact of source variability on flexibility for demand response," Energy, Elsevier, vol. 237(C).
    14. Pallonetto, Fabiano & De Rosa, Mattia & Milano, Federico & Finn, Donal P., 2019. "Demand response algorithms for smart-grid ready residential buildings using machine learning models," Applied Energy, Elsevier, vol. 239(C), pages 1265-1282.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Han & Johra, Hicham & de Andrade Pereira, Flavia & Hong, Tianzhen & Le Dréau, Jérôme & Maturo, Anthony & Wei, Mingjun & Liu, Yapan & Saberi-Derakhtenjani, Ali & Nagy, Zoltan & Marszal-Pomianowska,, 2023. "Data-driven key performance indicators and datasets for building energy flexibility: A review and perspectives," Applied Energy, Elsevier, vol. 343(C).
    2. Finck, Christian & Li, Rongling & Zeiler, Wim, 2019. "Economic model predictive control for demand flexibility of a residential building," Energy, Elsevier, vol. 176(C), pages 365-379.
    3. Bampoulas, Adamantios & Saffari, Mohammad & Pallonetto, Fabiano & Mangina, Eleni & Finn, Donal P., 2021. "A fundamental unified framework to quantify and characterise energy flexibility of residential buildings with multiple electrical and thermal energy systems," Applied Energy, Elsevier, vol. 282(PA).
    4. Tang, Hong & Wang, Shengwei & Li, Hangxin, 2021. "Flexibility categorization, sources, capabilities and technologies for energy-flexible and grid-responsive buildings: State-of-the-art and future perspective," Energy, Elsevier, vol. 219(C).
    5. Chen, Yongbao & Chen, Zhe & Xu, Peng & Li, Weilin & Sha, Huajing & Yang, Zhiwei & Li, Guowen & Hu, Chonghe, 2019. "Quantification of electricity flexibility in demand response: Office building case study," Energy, Elsevier, vol. 188(C).
    6. Finck, Christian & Li, Rongling & Kramer, Rick & Zeiler, Wim, 2018. "Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems," Applied Energy, Elsevier, vol. 209(C), pages 409-425.
    7. Bampoulas, Adamantios & Pallonetto, Fabiano & Mangina, Eleni & Finn, Donal P., 2022. "An ensemble learning-based framework for assessing the energy flexibility of residential buildings with multicomponent energy systems," Applied Energy, Elsevier, vol. 315(C).
    8. Zhang, Yichi & Johansson, Pär & Kalagasidis, Angela Sasic, 2021. "Techno-economic assessment of thermal energy storage technologies for demand-side management in low-temperature individual heating systems," Energy, Elsevier, vol. 236(C).
    9. Arteconi, Alessia & Mugnini, Alice & Polonara, Fabio, 2019. "Energy flexible buildings: A methodology for rating the flexibility performance of buildings with electric heating and cooling systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    10. Zhou, Yuekuan & Zheng, Siqian, 2020. "Machine-learning based hybrid demand-side controller for high-rise office buildings with high energy flexibilities," Applied Energy, Elsevier, vol. 262(C).
    11. Finck, Christian & Li, Rongling & Zeiler, Wim, 2020. "Optimal control of demand flexibility under real-time pricing for heating systems in buildings: A real-life demonstration," Applied Energy, Elsevier, vol. 263(C).
    12. John Clauß & Sebastian Stinner & Christian Solli & Karen Byskov Lindberg & Henrik Madsen & Laurent Georges, 2019. "Evaluation Method for the Hourly Average CO 2eq. Intensity of the Electricity Mix and Its Application to the Demand Response of Residential Heating," Energies, MDPI, vol. 12(7), pages 1-25, April.
    13. Ehsan Khorsandnejad & Robert Malzahn & Ann-Katrin Oldenburg & Annedore Mittreiter & Christian Doetsch, 2023. "Analysis of Flexibility Potential of a Cold Warehouse with Different Refrigeration Compressors," Energies, MDPI, vol. 17(1), pages 1-22, December.
    14. Clauß, John & Stinner, Sebastian & Sartori, Igor & Georges, Laurent, 2019. "Predictive rule-based control to activate the energy flexibility of Norwegian residential buildings: Case of an air-source heat pump and direct electric heating," Applied Energy, Elsevier, vol. 237(C), pages 500-518.
    15. Pallonetto, Fabiano & De Rosa, Mattia & D’Ettorre, Francesco & Finn, Donal P., 2020. "On the assessment and control optimisation of demand response programs in residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    16. Massimiliano Manfren & Maurizio Sibilla & Lamberto Tronchin, 2021. "Energy Modelling and Analytics in the Built Environment—A Review of Their Role for Energy Transitions in the Construction Sector," Energies, MDPI, vol. 14(3), pages 1-29, January.
    17. Oliveira Panão, Marta J.N. & Mateus, Nuno M. & Carrilho da Graça, G., 2019. "Measured and modeled performance of internal mass as a thermal energy battery for energy flexible residential buildings," Applied Energy, Elsevier, vol. 239(C), pages 252-267.
    18. Dmytro Romanchenko & Emil Nyholm & Mikael Odenberger & Filip Johnsson, 2019. "Flexibility Potential of Space Heating Demand Response in Buildings for District Heating Systems," Energies, MDPI, vol. 12(15), pages 1-23, July.
    19. Sebastian Berg & Lasse Blaume & Benedikt Nilges, 2023. "Quantifying the Operational Flexibility of Distributed Cross-Sectoral Energy Systems for the Integration of Volatile Renewable Electricity Generation," Energies, MDPI, vol. 17(1), pages 1-17, December.
    20. Xiaoyi Zhang & Weijun Gao & Yanxue Li & Zixuan Wang & Yoshiaki Ushifusa & Yingjun Ruan, 2021. "Operational Performance and Load Flexibility Analysis of Japanese Zero Energy House," IJERPH, MDPI, vol. 18(13), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:233-234:y:2019:i::p:764-775. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.