Amine-grafted mesoporous copper silicates as recyclable solid amine sorbents for post-combustion CO2 capture
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2017.04.044
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wang, Mei & Yao, Liwen & Wang, Jitong & Zhang, Zixiao & Qiao, Wenming & Long, Donghui & Ling, Licheng, 2016. "Adsorption and regeneration study of polyethylenimine-impregnated millimeter-sized mesoporous carbon spheres for post-combustion CO2 capture," Applied Energy, Elsevier, vol. 168(C), pages 282-290.
- Jiang, Guodong & Huang, Qinglin & Kenarsari, Saeed Danaei & Hu, Xin & Russell, Armistead G. & Fan, Maohong & Shen, Xiaodong, 2015. "A new mesoporous amine-TiO2 based pre-combustion CO2 capture technology," Applied Energy, Elsevier, vol. 147(C), pages 214-223.
- Wang, Weilong & Xiao, Jing & Wei, Xiaolan & Ding, Jing & Wang, Xiaoxing & Song, Chunshan, 2014. "Development of a new clay supported polyethylenimine composite for CO2 capture," Applied Energy, Elsevier, vol. 113(C), pages 334-341.
- Guo, Yafei & Zhao, Chuanwen & Li, Changhai & Lu, Shouxiang, 2014. "Application of PEI–K2CO3/AC for capturing CO2 from flue gas after combustion," Applied Energy, Elsevier, vol. 129(C), pages 17-24.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Lai, Qinghua & Diao, Zhijun & Kong, Lingli & Adidharma, Hertanto & Fan, Maohong, 2018. "Amine-impregnated silicic acid composite as an efficient adsorbent for CO2 capture," Applied Energy, Elsevier, vol. 223(C), pages 293-301.
- Fatemeh Fashi & Ahad Ghaemi & Peyman Moradi, 2019. "Piperazine‐modified activated alumina as a novel promising candidate for CO2 capture: experimental and modeling," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 9(1), pages 37-51, February.
- Yankun Sun & Wanzhen Liu & Xinzhong Wang & Haiyan Yang & Jun Liu, 2020. "Enhanced Adsorption of Carbon Dioxide from Simulated Biogas on PEI/MEA-Functionalized Silica," IJERPH, MDPI, vol. 17(4), pages 1-12, February.
- Gao, Jubao & Liu, Yida & Hoshino, Yu & Inoue, Gen, 2019. "Amine-containing nanogel particles supported on porous carriers for enhanced carbon dioxide capture," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Yang, Chuanruo & Du, Zhilin & Jin, Junsu & Chen, Jian & Mi, Jianguo, 2020. "Epoxide-functionalized tetraethylenepentamine encapsulated into porous copolymer spheres for CO2 capture with superior stability," Applied Energy, Elsevier, vol. 260(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lai, Qinghua & Diao, Zhijun & Kong, Lingli & Adidharma, Hertanto & Fan, Maohong, 2018. "Amine-impregnated silicic acid composite as an efficient adsorbent for CO2 capture," Applied Energy, Elsevier, vol. 223(C), pages 293-301.
- Chen, S.J. & Zhu, M. & Fu, Y. & Huang, Y.X. & Tao, Z.C. & Li, W.L., 2017. "Using 13X, LiX, and LiPdAgX zeolites for CO2 capture from post-combustion flue gas," Applied Energy, Elsevier, vol. 191(C), pages 87-98.
- Yaumi, A.L. & Bakar, M.Z. Abu & Hameed, B.H., 2017. "Recent advances in functionalized composite solid materials for carbon dioxide capture," Energy, Elsevier, vol. 124(C), pages 461-480.
- Thummakul, Theeranan & Gidaspow, Dimitri & Piumsomboon, Pornpote & Chalermsinsuwan, Benjapon, 2017. "CFD simulation of CO2 sorption on K2CO3 solid sorbent in novel high flux circulating-turbulent fluidized bed riser: Parametric statistical experimental design study," Applied Energy, Elsevier, vol. 190(C), pages 122-134.
- Li, Xiaoqiang & Ding, Yudong & Guo, Liheng & Liao, Qiang & Zhu, Xun & Wang, Hong, 2019. "Non-aqueous energy-efficient absorbents for CO2 capture based on porous silica nanospheres impregnated with amine," Energy, Elsevier, vol. 171(C), pages 109-119.
- Tao, Huayu & Qian, Xi & Zhou, Yi & Cheng, Hongfei, 2022. "Research progress of clay minerals in carbon dioxide capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
- Qasem, Naef A.A. & Ben-Mansour, Rached & Habib, Mohamed A., 2018. "An efficient CO2 adsorptive storage using MOF-5 and MOF-177," Applied Energy, Elsevier, vol. 210(C), pages 317-326.
- Janusz Kotowicz & Sebastian Michalski & Mateusz Brzęczek, 2019. "The Characteristics of a Modern Oxy-Fuel Power Plant," Energies, MDPI, vol. 12(17), pages 1-34, September.
- Irani, Maryam & Jacobson, Andrew T. & Gasem, Khaled A.M. & Fan, Maohong, 2018. "Facilely synthesized porous polymer as support of poly(ethyleneimine) for effective CO2 capture," Energy, Elsevier, vol. 157(C), pages 1-9.
- Junya Wang & Qiuyun Pu & Ping Ning & Shijian Lu, 2021. "Activated carbon‐based composites for capturing CO2: a review," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(2), pages 377-393, April.
- Wang, Weilong & Li, Jiang & Wei, Xiaolan & Ding, Jing & Feng, Haijun & Yan, Jinyue & Yang, Jianping, 2015. "Carbon dioxide adsorption thermodynamics and mechanisms on MCM-41 supported polyethylenimine prepared by wet impregnation method," Applied Energy, Elsevier, vol. 142(C), pages 221-228.
- Guo, Yafei & Zhao, Chuanwen & Li, Changhai & Lu, Shouxiang, 2014. "Application of PEI–K2CO3/AC for capturing CO2 from flue gas after combustion," Applied Energy, Elsevier, vol. 129(C), pages 17-24.
- Adnan, Muflih A. & Azis, Muhammad Mufti & Quddus, Mohammad R. & Hossain, Mohammad M., 2018. "Integrated liquid fuel based chemical looping combustion – parametric study for efficient power generation and CO2 capture," Applied Energy, Elsevier, vol. 228(C), pages 2398-2406.
- Zhao, Chuanwen & Guo, Yafei & Li, Changhai & Lu, Shouxiang, 2014. "Removal of low concentration CO2 at ambient temperature using several potassium-based sorbents," Applied Energy, Elsevier, vol. 124(C), pages 241-247.
- Qin, Changlei & Yin, Junjun & Ran, Jingyu & Zhang, Li & Feng, Bo, 2014. "Effect of support material on the performance of K2CO3-based pellets for cyclic CO2 capture," Applied Energy, Elsevier, vol. 136(C), pages 280-288.
- Qin, Qiaoyun & Liu, Hongyan & Zhang, Riguang & Ling, Lixia & Fan, Maohong & Wang, Baojun, 2018. "Application of density functional theory in studying CO2 capture with TiO2-supported K2CO3 being an example," Applied Energy, Elsevier, vol. 231(C), pages 167-178.
- Wang, Weilong & Guo, Shaopeng & Li, Hailong & Yan, Jinyue & Zhao, Jun & Li, Xun & Ding, Jing, 2014. "Experimental study on the direct/indirect contact energy storage container in mobilized thermal energy system (M-TES)," Applied Energy, Elsevier, vol. 119(C), pages 181-189.
- Najmus S. Sifat & Yousef Haseli, 2019. "A Critical Review of CO 2 Capture Technologies and Prospects for Clean Power Generation," Energies, MDPI, vol. 12(21), pages 1-33, October.
- Lee, Jae Won & Torres Pineda, Israel & Lee, Jung Hun & Kang, Yong Tae, 2016. "Combined CO2 absorption/regeneration performance enhancement by using nanoabsorbents," Applied Energy, Elsevier, vol. 178(C), pages 164-176.
- Kong, Yong & Shen, Xiaodong & Cui, Sheng & Fan, Maohong, 2015. "Development of monolithic adsorbent via polymeric sol–gel process for low-concentration CO2 capture," Applied Energy, Elsevier, vol. 147(C), pages 308-317.
More about this item
Keywords
CO2 capture; Solid amine sorbents; Copper silicates; CO2 emissions;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:198:y:2017:i:c:p:250-260. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.