IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v188y2017icp9-18.html
   My bibliography  Save this article

Microencapsulated phase change materials with high heat capacity and high cyclic durability for high-temperature thermal energy storage and transportation

Author

Listed:
  • Nomura, Takahiro
  • Sheng, Nan
  • Zhu, Chunyu
  • Saito, Genki
  • Hanzaki, Daiki
  • Hiraki, Takehito
  • Akiyama, Tomohiro

Abstract

Latent heat storage (LHS) technology employing phase change materials (PCMs) has received great attention as an alternative to conventional solid sensible heat storage (SHS) for future high-temperature energy utilisation systems. In this study, we report the synthesis of a core-shell type microencapsulated PCM (MEPCM) consisting of Al-25wt% Si microspheres (mean diameter of 36.3μm and melting temperature of 577°C) as the core (PCM) and Al2O3 as the shell. The MEPCM was prepared in two steps involving (1) the formation of an AlOOH precursor shell on the PCM microspheres by a hydroxide precipitation process in hot water and (2) heat-oxidation treatment in an O2 atmosphere to form a stable Al2O3 shell. In particular, the effects of heat-oxidation temperature on the shell morphology, shell crystal structure, mechanical strength, heat capacity, and cyclic durability of the prepared MEPCMs were examined. The resultant MEPCM is composed of a stable α-Al2O3 shell and Al-25wt% Si core with an effective void inside the core to allow for volume expansion of the PCMs during solid-liquid phase transitions. The heat capacity measured for this material is five times higher than that of conventional solid SHS materials. Additionally, the MEPCM exhibits excellent durability up to 300 heating and cooling cycles under oxygen atmosphere. Consequently, it can potentially be used in the next-generation LHS-based high-temperature thermal energy storage and transportation systems.

Suggested Citation

  • Nomura, Takahiro & Sheng, Nan & Zhu, Chunyu & Saito, Genki & Hanzaki, Daiki & Hiraki, Takehito & Akiyama, Tomohiro, 2017. "Microencapsulated phase change materials with high heat capacity and high cyclic durability for high-temperature thermal energy storage and transportation," Applied Energy, Elsevier, vol. 188(C), pages 9-18.
  • Handle: RePEc:eee:appene:v:188:y:2017:i:c:p:9-18
    DOI: 10.1016/j.apenergy.2016.11.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916316105
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.11.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. SarI, Ahmet & Alkan, Cemil & Karaipekli, Ali, 2010. "Preparation, characterization and thermal properties of PMMA/n-heptadecane microcapsules as novel solid-liquid microPCM for thermal energy storage," Applied Energy, Elsevier, vol. 87(5), pages 1529-1534, May.
    2. Huang, Zhaowen & Gao, Xuenong & Xu, Tao & Fang, Yutang & Zhang, Zhengguo, 2014. "Thermal property measurement and heat storage analysis of LiNO3/KCl – expanded graphite composite phase change material," Applied Energy, Elsevier, vol. 115(C), pages 265-271.
    3. Ishida, M. & Zheng, D. & Akehata, T., 1987. "Evaluation of a chemical-looping-combustion power-generation system by graphic exergy analysis," Energy, Elsevier, vol. 12(2), pages 147-154.
    4. Fukahori, Ryo & Nomura, Takahiro & Zhu, Chunyu & Sheng, Nan & Okinaka, Noriyuki & Akiyama, Tomohiro, 2016. "Thermal analysis of Al–Si alloys as high-temperature phase-change material and their corrosion properties with ceramic materials," Applied Energy, Elsevier, vol. 163(C), pages 1-8.
    5. Zhang, Ying & Wang, Xiaodong & Wu, Dezhen, 2016. "Microencapsulation of n-dodecane into zirconia shell doped with rare earth: Design and synthesis of bifunctional microcapsules for photoluminescence enhancement and thermal energy storage," Energy, Elsevier, vol. 97(C), pages 113-126.
    6. Guillot, Stéphanie & Faik, Abdessamad & Rakhmatullin, Aydar & Lambert, Julien & Veron, Emmanuel & Echegut, Patrick & Bessada, Catherine & Calvet, Nicolas & Py, Xavier, 2012. "Corrosion effects between molten salts and thermal storage material for concentrated solar power plants," Applied Energy, Elsevier, vol. 94(C), pages 174-181.
    7. Gokon, Nobuyuki & Nakamura, Shohei & Hatamachi, Tsuyoshi & Kodama, Tatsuya, 2014. "Steam reforming of methane using double-walled reformer tubes containing high-temperature thermal storage Na2CO3/MgO composites for solar fuel production," Energy, Elsevier, vol. 68(C), pages 773-782.
    8. Giro-Paloma, Jessica & Martínez, Mònica & Cabeza, Luisa F. & Fernández, A. Inés, 2016. "Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1059-1075.
    9. Maruoka, Nobuhiro & Akiyama, Tomohiro, 2006. "Exergy recovery from steelmaking off-gas by latent heat storage for methanol production," Energy, Elsevier, vol. 31(10), pages 1632-1642.
    10. Nardin, Gioacchino & Meneghetti, Antonella & Dal Magro, Fabio & Benedetti, Nicole, 2014. "PCM-based energy recovery from electric arc furnaces," Applied Energy, Elsevier, vol. 136(C), pages 947-955.
    11. Yu, Shiyu & Wang, Xiaodong & Wu, Dezhen, 2014. "Microencapsulation of n-octadecane phase change material with calcium carbonate shell for enhancement of thermal conductivity and serving durability: Synthesis, microstructure, and performance evaluat," Applied Energy, Elsevier, vol. 114(C), pages 632-643.
    12. Ishida, Masaru & Jin, Hongguang, 1994. "A new advanced power-generation system using chemical-looping combustion," Energy, Elsevier, vol. 19(4), pages 415-422.
    13. Chen, Zhong-Hua & Yu, Fei & Zeng, Xing-Rong & Zhang, Zheng-Guo, 2012. "Preparation, characterization and thermal properties of nanocapsules containing phase change material n-dodecanol by miniemulsion polymerization with polymerizable emulsifier," Applied Energy, Elsevier, vol. 91(1), pages 7-12.
    14. Zhang, H.L. & Baeyens, J. & Degrève, J. & Cáceres, G. & Segal, R. & Pitié, F., 2014. "Latent heat storage with tubular-encapsulated phase change materials (PCMs)," Energy, Elsevier, vol. 76(C), pages 66-72.
    15. Tian, Heqing & Wang, Weilong & Ding, Jing & Wei, Xiaolan & Song, Ming & Yang, Jianping, 2015. "Thermal conductivities and characteristics of ternary eutectic chloride/expanded graphite thermal energy storage composites," Applied Energy, Elsevier, vol. 148(C), pages 87-92.
    16. Fukahori, Ryo & Nomura, Takahiro & Zhu, Chunyu & Sheng, Nan & Okinaka, Noriyuki & Akiyama, Tomohiro, 2016. "Macro-encapsulation of metallic phase change material using cylindrical-type ceramic containers for high-temperature thermal energy storage," Applied Energy, Elsevier, vol. 170(C), pages 324-328.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Huili & Kong, Weibin & Tan, Tianwei & Baeyens, Jan, 2017. "High-efficiency concentrated solar power plants need appropriate materials for high-temperature heat capture, conveying and storage," Energy, Elsevier, vol. 139(C), pages 52-64.
    2. Kawaguchi, Takahiro & Sakai, Hiroki & Sheng, Nan & Kurniawan, Ade & Nomura, Takahiro, 2020. "Microencapsulation of Zn-Al alloy as a new phase change material for middle-high-temperature thermal energy storage applications," Applied Energy, Elsevier, vol. 276(C).
    3. Ma, F. & Zhang, P. & Shi, X.J., 2018. "Investigation of thermo-fluidic performance of phase change material slurry and energy transport characteristics," Applied Energy, Elsevier, vol. 227(C), pages 643-654.
    4. Huo, Jinhua & Zhang, Ruizhi & Yu, Baisong & Che, Yuanjun & Wu, Zhansheng & Zhang, Xing & Peng, Zhigang, 2022. "Preparation, characterization, investigation of phase change micro-encapsulated thermal control material used for energy storage and temperature regulation in deep-water oil and gas development," Energy, Elsevier, vol. 239(PD).
    5. Rezaei, Ehsan & Barbato, Maurizio & Ortona, Alberto & Haussener, Sophia, 2020. "Design and optimization of a high-temperature latent heat storage unit," Applied Energy, Elsevier, vol. 261(C).
    6. Wei, Xiao & Xue, Fei & Qi, Xiao-dong & Yang, Jing-hui & Zhou, Zuo-wan & Yuan, Yan-ping & Wang, Yong, 2019. "Photo- and electro-responsive phase change materials based on highly anisotropic microcrystalline cellulose/graphene nanoplatelet structure," Applied Energy, Elsevier, vol. 236(C), pages 70-80.
    7. Xie, Peng & Jin, Lu & Qiao, Geng & Lin, Cheng & Barreneche, Camila & Ding, Yulong, 2022. "Thermal energy storage for electric vehicles at low temperatures: Concepts, systems, devices and materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    8. Jacob, Rhys & Belusko, Martin & Liu, Ming & Saman, Wasim & Bruno, Frank, 2019. "Using renewables coupled with thermal energy storage to reduce natural gas consumption in higher temperature commercial/industrial applications," Renewable Energy, Elsevier, vol. 131(C), pages 1035-1046.
    9. Diao, Y.H. & Liang, L. & Zhao, Y.H. & Wang, Z.Y. & Bai, F.W., 2019. "Numerical investigation of the thermal performance enhancement of latent heat thermal energy storage using longitudinal rectangular fins and flat micro-heat pipe arrays," Applied Energy, Elsevier, vol. 233, pages 894-905.
    10. Costa, Sol Carolina & Kenisarin, Murat, 2022. "A review of metallic materials for latent heat thermal energy storage: Thermophysical properties, applications, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    11. Yu, Qinghua & Jiang, Zhu & Cong, Lin & Lu, Tiejun & Suleiman, Bilyaminu & Leng, Guanghui & Wu, Zhentao & Ding, Yulong & Li, Yongliang, 2019. "A novel low-temperature fabrication approach of composite phase change materials for high temperature thermal energy storage," Applied Energy, Elsevier, vol. 237(C), pages 367-377.
    12. Jiang, Feng & Zhang, Lingling & She, Xiaohui & Li, Chuan & Cang, Daqiang & Liu, Xianglei & Xuan, Yimin & Ding, Yulong, 2020. "Skeleton materials for shape-stabilization of high temperature salts based phase change materials: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    13. Jin, Xing & Hu, Huoyan & Shi, Xing & Zhou, Xin & Yang, Liu & Yin, Yonggao & Zhang, Xiaosong, 2018. "A new heat transfer model of phase change material based on energy asymmetry," Applied Energy, Elsevier, vol. 212(C), pages 1409-1416.
    14. Koide, Hiroaki & Kurniawan, Ade & Takahashi, Tatsuya & Kawaguchi, Takahiro & Sakai, Hiroki & Sato, Yusuke & Chiu, Justin NW. & Nomura, Takahiro, 2022. "Performance analysis of packed bed latent heat storage system for high-temperature thermal energy storage using pellets composed of micro-encapsulated phase change material," Energy, Elsevier, vol. 238(PC).
    15. Sakai, Hiroki & Sheng, Nan & Kurniawan, Ade & Akiyama, Tomohiro & Nomura, Takahiro, 2020. "Fabrication of heat storage pellets composed of microencapsulated phase change material for high-temperature applications," Applied Energy, Elsevier, vol. 265(C).
    16. Jiang, Feng & Ge, Zhiwei & Ling, Xiang & Cang, Daqiang & Zhang, Lingling & Ding, Yulong, 2021. "Improved thermophysical properties of shape-stabilized NaNO3 using a modified diatomite-based porous ceramic for solar thermal energy storage," Renewable Energy, Elsevier, vol. 179(C), pages 327-338.
    17. Geng, Xiaoye & Li, Wei & Yin, Qing & Wang, Yu & Han, Na & Wang, Ning & Bian, Junmin & Wang, Jianping & Zhang, Xingxiang, 2018. "Design and fabrication of reversible thermochromic microencapsulated phase change materials for thermal energy storage and its antibacterial activity," Energy, Elsevier, vol. 159(C), pages 857-869.
    18. Geng, Xiaoye & Li, Wei & Wang, Yu & Lu, Jiangwei & Wang, Jianping & Wang, Ning & Li, Jianjie & Zhang, Xingxiang, 2018. "Reversible thermochromic microencapsulated phase change materials for thermal energy storage application in thermal protective clothing," Applied Energy, Elsevier, vol. 217(C), pages 281-294.
    19. He, Yayue & Li, Wei & Han, Na & Wang, Jianping & Zhang, Xingxiang, 2019. "Facile flexible reversible thermochromic membranes based on micro/nanoencapsulated phase change materials for wearable temperature sensor," Applied Energy, Elsevier, vol. 247(C), pages 615-629.
    20. Lin, Yaxue & Alva, Guruprasad & Fang, Guiyin, 2018. "Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials," Energy, Elsevier, vol. 165(PA), pages 685-708.
    21. Zhang, Hanfei & Shin, Donghyun & Santhanagopalan, Sunand, 2019. "Microencapsulated binary carbonate salt mixture in silica shell with enhanced effective heat capacity for high temperature latent heat storage," Renewable Energy, Elsevier, vol. 134(C), pages 1156-1162.
    22. Maruoka, Nobuhiro & Tsutsumi, Taichi & Ito, Akihisa & Hayasaka, Miho & Nogami, Hiroshi, 2020. "Heat release characteristics of a latent heat storage heat exchanger by scraping the solidified phase change material layer," Energy, Elsevier, vol. 205(C).
    23. Zhao, Y. & Zhao, C.Y. & Markides, C.N. & Wang, H. & Li, W., 2020. "Medium- and high-temperature latent and thermochemical heat storage using metals and metallic compounds as heat storage media: A technical review," Applied Energy, Elsevier, vol. 280(C).
    24. Yuan, Fan & Li, Ming-Jia & Qiu, Yu & Ma, Zhao & Li, Meng-Jie, 2019. "Specific heat capacity improvement of molten salt for solar energy applications using charged single-walled carbon nanotubes," Applied Energy, Elsevier, vol. 250(C), pages 1481-1490.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fukahori, Ryo & Nomura, Takahiro & Zhu, Chunyu & Sheng, Nan & Okinaka, Noriyuki & Akiyama, Tomohiro, 2016. "Macro-encapsulation of metallic phase change material using cylindrical-type ceramic containers for high-temperature thermal energy storage," Applied Energy, Elsevier, vol. 170(C), pages 324-328.
    2. Fukahori, Ryo & Nomura, Takahiro & Zhu, Chunyu & Sheng, Nan & Okinaka, Noriyuki & Akiyama, Tomohiro, 2016. "Thermal analysis of Al–Si alloys as high-temperature phase-change material and their corrosion properties with ceramic materials," Applied Energy, Elsevier, vol. 163(C), pages 1-8.
    3. Zhao, Y. & Zhao, C.Y. & Markides, C.N. & Wang, H. & Li, W., 2020. "Medium- and high-temperature latent and thermochemical heat storage using metals and metallic compounds as heat storage media: A technical review," Applied Energy, Elsevier, vol. 280(C).
    4. Mohamed, Shamseldin A. & Al-Sulaiman, Fahad A. & Ibrahim, Nasiru I. & Zahir, Md. Hasan & Al-Ahmed, Amir & Saidur, R. & Yılbaş, B.S. & Sahin, A.Z., 2017. "A review on current status and challenges of inorganic phase change materials for thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1072-1089.
    5. Milián, Yanio E. & Gutiérrez, Andrea & Grágeda, Mario & Ushak, Svetlana, 2017. "A review on encapsulation techniques for inorganic phase change materials and the influence on their thermophysical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 983-999.
    6. Umair, Malik Muhammad & Zhang, Yuang & Iqbal, Kashif & Zhang, Shufen & Tang, Bingtao, 2019. "Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–A review," Applied Energy, Elsevier, vol. 235(C), pages 846-873.
    7. Nomura, Takahiro & Zhu, Chunyu & Nan, Sheng & Tabuchi, Kazuki & Wang, Shuangfeng & Akiyama, Tomohiro, 2016. "High thermal conductivity phase change composite with a metal-stabilized carbon-fiber network," Applied Energy, Elsevier, vol. 179(C), pages 1-6.
    8. Lin, Yaxue & Alva, Guruprasad & Fang, Guiyin, 2018. "Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials," Energy, Elsevier, vol. 165(PA), pages 685-708.
    9. Zhang, P. & Xiao, X. & Ma, Z.W., 2016. "A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement," Applied Energy, Elsevier, vol. 165(C), pages 472-510.
    10. Yataganbaba, Alptug & Ozkahraman, Bengi & Kurtbas, Irfan, 2017. "Worldwide trends on encapsulation of phase change materials: A bibliometric analysis (1990–2015)," Applied Energy, Elsevier, vol. 185(P1), pages 720-731.
    11. Jiang, Feng & Zhang, Lingling & She, Xiaohui & Li, Chuan & Cang, Daqiang & Liu, Xianglei & Xuan, Yimin & Ding, Yulong, 2020. "Skeleton materials for shape-stabilization of high temperature salts based phase change materials: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    12. Gao, Wei & Liu, Feifan & Yu, Cheng & Chen, Yongping & Liu, Xiangdong, 2023. "Microfluidic method–based encapsulated phase change materials: Fundamentals, progress, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    13. Dal Magro, Fabio & Savino, Stefano & Meneghetti, Antonella & Nardin, Gioacchino, 2017. "Coupling waste heat extraction by phase change materials with superheated steam generation in the steel industry," Energy, Elsevier, vol. 137(C), pages 1107-1118.
    14. Jamekhorshid, A. & Sadrameli, S.M. & Farid, M., 2014. "A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 531-542.
    15. Rezaei, Ehsan & Barbato, Maurizio & Ortona, Alberto & Haussener, Sophia, 2020. "Design and optimization of a high-temperature latent heat storage unit," Applied Energy, Elsevier, vol. 261(C).
    16. Jiang, Binbin & Wang, Xiaodong & Wu, Dezhen, 2017. "Fabrication of microencapsulated phase change materials with TiO2/Fe3O4 hybrid shell as thermoregulatory enzyme carriers: A novel design of applied energy microsystem for bioapplications," Applied Energy, Elsevier, vol. 201(C), pages 20-33.
    17. Lin, Yaxue & Jia, Yuting & Alva, Guruprasad & Fang, Guiyin, 2018. "Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2730-2742.
    18. Zhang, Xiaoyu & Wang, Xiaodong & Wu, Dezhen, 2016. "Design and synthesis of multifunctional microencapsulated phase change materials with silver/silica double-layered shell for thermal energy storage, electrical conduction and antimicrobial effectivene," Energy, Elsevier, vol. 111(C), pages 498-512.
    19. Su, Weiguang & Darkwa, Jo & Kokogiannakis, Georgios, 2015. "Review of solid–liquid phase change materials and their encapsulation technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 373-391.
    20. Sarı, Ahmet & Alkan, Cemil & Bilgin, Cahit, 2014. "Micro/nano encapsulation of some paraffin eutectic mixtures with poly(methyl methacrylate) shell: Preparation, characterization and latent heat thermal energy storage properties," Applied Energy, Elsevier, vol. 136(C), pages 217-227.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:188:y:2017:i:c:p:9-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.