IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v181y2016icp514-526.html
   My bibliography  Save this article

Economic-energy-environment analysis of prospective sugarcane bioethanol production in Brazil

Author

Listed:
  • de Carvalho, Ariovaldo Lopes
  • Antunes, Carlos Henggeler
  • Freire, Fausto

Abstract

Bioethanol from sugarcane can be produced using first-generation (1G) or second-generation (2G) technologies. 2G technologies can increase the capacity of production per sugarcane mass input and are expected to have a key role in future reductions of environmental impacts of sugarcane bioethanol. A hybrid Input-Output (IO) framework is developed for Brazil coupling the System of National Accounts and the National Energy Balance, which is extended to assess Greenhouse Gas (GHG) emissions. Life-cycle based estimates for two sugarcane cultivation systems, two 1G and eight 2G bioethanol production scenarios, are coupled in the IO framework. A multi-objective linear programming (MOLP) model is formulated based on this framework for energy-economic-environmental analysis of the Brazilian economic system and domestic bioethanol supply in prospective scenarios. Twenty-four solutions are computed: four “extreme” solutions resulting from the individual optimization of each objective function (GDP, employment level, total energy consumption and total GHG emissions - 1G scenario), ten compromise solutions minimizing the distance of the feasible region to the ideal solution (1G, 1G-optimized and prospective 1G+2G scenarios), and ten solutions maximizing the total bioethanol production (1G, 1G-optimized and prospective 1G+2G scenarios). Higher diesel oil and lubricants consumption in the mechanical harvesting process has counterbalanced the positive effects of more efficient trucks leading to higher energy consumption and GHG emissions. Lower overall employment level in the 1G+2G scenarios is achieved such that policies linked to reabsorption of sugarcane cutters in alternative activities are positive. Indirect effects from maximizing the bioethanol production increase the total energy consumption and the GHG emissions thus requiring efficiency measures and fossil energy substitution by cleaner sources. The integrated- or country-based analysis of the whole economic system has complemented the process design and process-based analysis, contributing to identify direct and indirect effects that can offset the benefits. Direct and indirect effects on the whole economic system have to be considered in policies and technological choices for prospective bioethanol production, since positive direct effects of 1G+2G plants can be counterbalanced by indirect impacts on other sectors, mainly from chemicals in the process.

Suggested Citation

  • de Carvalho, Ariovaldo Lopes & Antunes, Carlos Henggeler & Freire, Fausto, 2016. "Economic-energy-environment analysis of prospective sugarcane bioethanol production in Brazil," Applied Energy, Elsevier, vol. 181(C), pages 514-526.
  • Handle: RePEc:eee:appene:v:181:y:2016:i:c:p:514-526
    DOI: 10.1016/j.apenergy.2016.07.122
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916310698
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.07.122?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marcelo Pereira Da Cunha & Jose Antonio Scaramucci, 2006. "Bioethanol As Basis for Regional Development in Brazil: An Input-Output Model With Mixed Technologies," ERSA conference papers ersa06p242, European Regional Science Association.
    2. Tan, Raymond R. & Aviso, Kathleen B. & Barilea, Ivan U. & Culaba, Alvin B. & Cruz, Jose B., 2012. "A fuzzy multi-regional input–output optimization model for biomass production and trade under resource and footprint constraints," Applied Energy, Elsevier, vol. 90(1), pages 154-160.
    3. Bicknell, Kathryn B. & Ball, Richard J. & Cullen, Ross & Bigsby, Hugh R., 1998. "New methodology for the ecological footprint with an application to the New Zealand economy," Ecological Economics, Elsevier, vol. 27(2), pages 149-160, November.
    4. Oliveira, Carla & Antunes, Carlos Henggeler, 2011. "A multi-objective multi-sectoral economy–energy–environment model: Application to Portugal," Energy, Elsevier, vol. 36(5), pages 2856-2866.
    5. da Costa, Cinthia Cabral & Burnquist, Heloisa Lee & Guilhoto, Joaquim José Martins, 2006. "Impacto de alterações nas exportações de açúcar e álcool nas regiões Centro-Sul e Norte-Nordeste sobre a economia do Brasil," Revista de Economia e Sociologia Rural (RESR), Sociedade Brasileira de Economia e Sociologia Rural, vol. 44(4), January.
    6. Igos, Elorri & Rugani, Benedetto & Rege, Sameer & Benetto, Enrico & Drouet, Laurent & Zachary, Daniel S., 2015. "Combination of equilibrium models and hybrid life cycle-input–output analysis to predict the environmental impacts of energy policy scenarios," Applied Energy, Elsevier, vol. 145(C), pages 234-245.
    7. Hsu, George J. Y. & Chou, Feng-Ying, 2000. "Integrated planning for mitigating CO2 emissions in Taiwan: a multi-objective programming approach," Energy Policy, Elsevier, vol. 28(8), pages 519-523, July.
    8. de Carvalho, Ariovaldo Lopes & Henggeler Antunes, Carlos & Freire, Fausto & Oliveira Henriques, Carla, 2016. "A multi-objective interactive approach to assess economic-energy-environment trade-offs in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1429-1442.
    9. Cruz Jr., Jose B. & Tan, Raymond R. & Culaba, Alvin B. & Ballacillo, Jo-Anne, 2009. "A dynamic input-output model for nascent bioenergy supply chains," Applied Energy, Elsevier, vol. 86(Supplemen), pages 86-94, November.
    10. Chen, Tser-yieth, 2001. "The impact of mitigating CO2 emissions on Taiwan's economy," Energy Economics, Elsevier, vol. 23(2), pages 141-151, March.
    11. Chung, Whan-Sam & Tohno, Susumu & Shim, Sang Yul, 2009. "An estimation of energy and GHG emission intensity caused by energy consumption in Korea: An energy IO approach," Applied Energy, Elsevier, vol. 86(10), pages 1902-1914, October.
    12. Chen, Shaoqing & Chen, Bin, 2015. "Urban energy consumption: Different insights from energy flow analysis, input–output analysis and ecological network analysis," Applied Energy, Elsevier, vol. 138(C), pages 99-107.
    13. Gay, Philip W. & Proops, John L.R., 1993. "Carbon---dioxide production by the UK economy: An input-output assessment," Applied Energy, Elsevier, vol. 44(2), pages 113-130.
    14. Zhang, B. & Qiao, H. & Chen, Z.M. & Chen, B., 2016. "Growth in embodied energy transfers via China’s domestic trade: Evidence from multi-regional input–output analysis," Applied Energy, Elsevier, vol. 184(C), pages 1093-1105.
    15. Moulik, T. K. & Dholakia, B. H. & Dholakia, R. H. & Ramani, K. V. & Shukla, P. R., 1992. "Energy planning in India : The relevance of regional planning for national policy," Energy Policy, Elsevier, vol. 20(9), pages 836-846, September.
    16. Hristu-Varsakelis, D. & Karagianni, S. & Pempetzoglou, M. & Sfetsos, A., 2010. "Optimizing production with energy and GHG emission constraints in Greece: An input-output analysis," Energy Policy, Elsevier, vol. 38(3), pages 1566-1577, March.
    17. Khatiwada, Dilip & Leduc, Sylvain & Silveira, Semida & McCallum, Ian, 2016. "Optimizing ethanol and bioelectricity production in sugarcane biorefineries in Brazil," Renewable Energy, Elsevier, vol. 85(C), pages 371-386.
    18. Burnquist, H. L. & Costa, C. C. & Guilhoto, J. J. M., 2004. "Impacts of Changes In Regional Sugar and Ethanol Exports Upon Brazilian Overall Economy," MPRA Paper 38327, University Library of Munich, Germany.
    19. Chung, Whan-Sam & Tohno, Susumu & Choi, Ki-Hong, 2011. "Socio-technological impact analysis using an energy IO approach to GHG emissions issues in South Korea," Applied Energy, Elsevier, vol. 88(11), pages 3747-3758.
    20. Oliveira, Carla & Antunes, Carlos Henggeler, 2004. "A multiple objective model to deal with economy-energy-environment interactions," European Journal of Operational Research, Elsevier, vol. 153(2), pages 370-385, March.
    21. Herman E. Daly, 1968. "On Economics as a Life Science," Journal of Political Economy, University of Chicago Press, vol. 76(3), pages 392-392.
    22. Carvalho, Ariovaldo Lopes de & Antunes, Carlos Henggeler & Freire, Fausto & Henriques, Carla Oliveira, 2015. "A hybrid input–output multi-objective model to assess economic–energy–environment trade-offs in Brazil," Energy, Elsevier, vol. 82(C), pages 769-785.
    23. Bush, Ruth & Jacques, David A. & Scott, Kate & Barrett, John, 2014. "The carbon payback of micro-generation: An integrated hybrid input–output approach," Applied Energy, Elsevier, vol. 119(C), pages 85-98.
    24. Compeán, Roberto Guerrero & Polenske, Karen R., 2011. "Antagonistic bioenergies: Technological divergence of the ethanol industry in Brazil," Energy Policy, Elsevier, vol. 39(11), pages 6951-6961.
    25. Leontief, Wassily, 1970. "Environmental Repercussions and the Economic Structure: An Input-Output Approach," The Review of Economics and Statistics, MIT Press, vol. 52(3), pages 262-271, August.
    26. Guilhoto, Joaquim José Martins & Sesso Filho, Umberto Antonio, 2010. "Estimação da matriz insumo-produto utilizando dados preliminares das contas nacionais: aplicação e análise de indicadores econômicos para o Brasil em 2005 [Estimation of input-output matrix using p," MPRA Paper 37539, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kang, Jidong & Ng, Tsan Sheng & Su, Bin & Milovanoff, Alexandre, 2021. "Electrifying light-duty passenger transport for CO2 emissions reduction: A stochastic-robust input–output linear programming model," Energy Economics, Elsevier, vol. 104(C).
    2. Lemos, S.V. & Salgado Junior, A.P. & Rebehy, P.C.P.W. & Carlucci, F.V. & Novi, J.C., 2021. "Framework for improving agro-industrial efficiency in renewable energy: Examining Brazilian bioenergy companies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Kang, Jidong & Ng, Tsan Sheng & Su, Bin, 2020. "Optimizing electricity mix for CO2 emissions reduction: A robust input-output linear programming model," European Journal of Operational Research, Elsevier, vol. 287(1), pages 280-292.
    4. Mutran, Victoria M. & Ribeiro, Celma O. & Nascimento, Claudio A.O. & Chachuat, Benoît, 2020. "Risk-conscious optimization model to support bioenergy investments in the Brazilian sugarcane industry," Applied Energy, Elsevier, vol. 258(C).
    5. Lemos, Stella Vannucci & Salgado, Alexandre Pereira & Duarte, Alexandre & de Souza, Marco Antonio Alves & de Almeida Antunes, Fernanda, 2019. "Agroindustrial best practices that contribute to technical efficiency in Brazilian sugar and ethanol production mills," Energy, Elsevier, vol. 177(C), pages 397-411.
    6. Mu, Yaqian & Cai, Wenjia & Evans, Samuel & Wang, Can & Roland-Holst, David, 2018. "Employment impacts of renewable energy policies in China: A decomposition analysis based on a CGE modeling framework," Applied Energy, Elsevier, vol. 210(C), pages 256-267.
    7. Buchspies, Benedikt & Kaltschmitt, Martin, 2018. "A consequential assessment of changes in greenhouse gas emissions due to the introduction of wheat straw ethanol in the context of European legislation," Applied Energy, Elsevier, vol. 211(C), pages 368-381.
    8. Moncada, J.A. & Verstegen, J.A. & Posada, J.A. & Junginger, M. & Lukszo, Z. & Faaij, A. & Weijnen, M., 2018. "Exploring policy options to spur the expansion of ethanol production and consumption in Brazil: An agent-based modeling approach," Energy Policy, Elsevier, vol. 123(C), pages 619-641.
    9. Brinkman, Marnix L.J. & Wicke, Birka & Faaij, André P.C. & van der Hilst, Floor, 2019. "Projecting socio-economic impacts of bioenergy: Current status and limitations of ex-ante quantification methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    10. Zhou, Kaile & Wei, Shuyu & Yang, Shanlin, 2019. "Time-of-use pricing model based on power supply chain for user-side microgrid," Applied Energy, Elsevier, vol. 248(C), pages 35-43.
    11. Mengting Wu & Wei Liu & Zhifei Ma & Tian Qin & Zhiqin Chen & Yalan Zhang & Ning Cao & Xianchuan Xie & Sunlin Chi & Jinying Xu & Yi Qi, 2024. "Global Trends in the Research and Development of Petrochemical Waste Gas from 1981 to 2022," Sustainability, MDPI, vol. 16(14), pages 1-25, July.
    12. Kuo, Yen-Ting & Chen, Ju-Shiou & Yang, Tzu-Yueh & Wan, Hou-Peng, 2018. "Technical and Economic approach of bioethanol production from nanofiltration of biomass chemical hydrolysis solutions," Applied Energy, Elsevier, vol. 215(C), pages 426-436.
    13. Jiang, Meihui & An, Haizhong & Gao, Xiangyun & Liu, Donghui & Jia, Nanfei & Xi, Xian, 2020. "Consumption-based multi-objective optimization model for minimizing energy consumption: A case study of China," Energy, Elsevier, vol. 208(C).
    14. Zhang, Quanguo & Nurhayati, & Cheng, Chieh-Lun & Lo, Yung-Chung & Nagarajan, Dillirani & Hu, Jianjun & Chang, Jo-Shu & Lee, Duu-Jong, 2017. "Ethanol production by modified polyvinyl alcohol-immobilized Zymomonas mobilis and in situ membrane distillation under very high gravity condition," Applied Energy, Elsevier, vol. 202(C), pages 1-5.
    15. Debnath, Deepayan & Whistance, Jarrett & Thompson, Wyatt & Binfield, Julian, 2017. "Complement or substitute: Ethanol’s uncertain relationship with gasoline under alternative petroleum price and policy scenarios," Applied Energy, Elsevier, vol. 191(C), pages 385-397.
    16. Soares, N. & Martins, A.G. & Carvalho, A.L. & Caldeira, C. & Du, C. & Castanheira, É. & Rodrigues, E. & Oliveira, G. & Pereira, G.I. & Bastos, J. & Ferreira, J.P. & Ribeiro, L.A. & Figueiredo, N.C. & , 2018. "The challenging paradigm of interrelated energy systems towards a more sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 171-193.
    17. Carminati, Hudson Bolsoni & Milão, Raquel de Freitas D. & de Medeiros, José Luiz & Araújo, Ofélia de Queiroz F., 2019. "Bioenergy and full carbon dioxide sinking in sugarcane-biorefinery with post-combustion capture and storage: Techno-economic feasibility," Applied Energy, Elsevier, vol. 254(C).
    18. Czekała, Wojciech & Bartnikowska, Sylwia & Dach, Jacek & Janczak, Damian & Smurzyńska, Anna & Kozłowski, Kamil & Bugała, Artur & Lewicki, Andrzej & Cieślik, Marta & Typańska, Dorota & Mazurkiewicz, Ja, 2018. "The energy value and economic efficiency of solid biofuels produced from digestate and sawdust," Energy, Elsevier, vol. 159(C), pages 1118-1122.
    19. Fujii, Shoma & Horie, Naoyuki & Nakaibayashi, Ko & Kanematsu, Yuichiro & Kikuchi, Yasunori & Nakagaki, Takao, 2019. "Design of zeolite boiler in thermochemical energy storage and transport system utilizing unused heat from sugar mill," Applied Energy, Elsevier, vol. 238(C), pages 561-571.
    20. Brinkman, Marnix L.J. & da Cunha, Marcelo P. & Heijnen, Sanne & Wicke, Birka & Guilhoto, Joaquim J.M. & Walter, Arnaldo & Faaij, André P.C. & van der Hilst, Floor, 2018. "Interregional assessment of socio-economic effects of sugarcane ethanol production in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 347-362.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soares, N. & Martins, A.G. & Carvalho, A.L. & Caldeira, C. & Du, C. & Castanheira, É. & Rodrigues, E. & Oliveira, G. & Pereira, G.I. & Bastos, J. & Ferreira, J.P. & Ribeiro, L.A. & Figueiredo, N.C. & , 2018. "The challenging paradigm of interrelated energy systems towards a more sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 171-193.
    2. C. Oliveira & D. Coelho & C. H. Antunes, 2016. "Coupling input–output analysis with multiobjective linear programming models for the study of economy–energy–environment–social (E3S) trade-offs: a review," Annals of Operations Research, Springer, vol. 247(2), pages 471-502, December.
    3. Carvalho, Ariovaldo Lopes de & Antunes, Carlos Henggeler & Freire, Fausto & Henriques, Carla Oliveira, 2015. "A hybrid input–output multi-objective model to assess economic–energy–environment trade-offs in Brazil," Energy, Elsevier, vol. 82(C), pages 769-785.
    4. de Carvalho, Ariovaldo Lopes & Henggeler Antunes, Carlos & Freire, Fausto & Oliveira Henriques, Carla, 2016. "A multi-objective interactive approach to assess economic-energy-environment trade-offs in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1429-1442.
    5. Boglioni, Michele & Zambelli, Stefano, 2018. "Specialization patterns and reduction of CO2 emissions. An empirical investigation of environmental preservation and economic efficiency," Energy Economics, Elsevier, vol. 75(C), pages 134-149.
    6. Cortés-Borda, D. & Ruiz-Hernández, A. & Guillén-Gosálbez, G. & Llop, M. & Guimerà, R. & Sales-Pardo, M., 2015. "Identifying strategies for mitigating the global warming impact of the EU-25 economy using a multi-objective input–output approach," Energy Policy, Elsevier, vol. 77(C), pages 21-30.
    7. Chen, Zhan-Ming & Liu, Yu & Qin, Ping & Zhang, Bo & Lester, Leo & Chen, Guanghua & Guo, Yumei & Zheng, Xinye, 2015. "Environmental externality of coal use in China: Welfare effect and tax regulation," Applied Energy, Elsevier, vol. 156(C), pages 16-31.
    8. Kucukvar, Murat & Cansev, Bunyamin & Egilmez, Gokhan & Onat, Nuri C. & Samadi, Hamidreza, 2016. "Energy-climate-manufacturing nexus: New insights from the regional and global supply chains of manufacturing industries," Applied Energy, Elsevier, vol. 184(C), pages 889-904.
    9. He, Peijun & Ng, Tsan Sheng & Su, Bin, 2019. "Energy-economic resilience with multi-region input–output linear programming models," Energy Economics, Elsevier, vol. 84(C).
    10. Yang, Ranran & Long, Ruyin & Yue, Ting & Shi, Haihong, 2014. "Calculation of embodied energy in Sino-USA trade: 1997–2011," Energy Policy, Elsevier, vol. 72(C), pages 110-119.
    11. Stanislav Shmelev & Harrison Roger Brook, 2021. "Macro Sustainability across Countries: Key Sector Environmentally Extended Input-Output Analysis," Sustainability, MDPI, vol. 13(21), pages 1-46, October.
    12. Cholapat Jongdeepaisal & Seigo Nasu, 2018. "Economic Impact Evaluation of a Biomass Power Plant Using a Technical Coefficient Pre-Adjustment in Hybrid Input-Output Analysis," Energies, MDPI, vol. 11(3), pages 1-11, March.
    13. Henriques, C. Oliveira & Antunes, C. Henggeler, 2012. "Interactions of economic growth, energy consumption and the environment in the context of the crisis – A study with uncertain data," Energy, Elsevier, vol. 48(1), pages 415-422.
    14. Chen, Zhan-Ming, 2014. "Inflationary effect of coal price change on the Chinese economy," Applied Energy, Elsevier, vol. 114(C), pages 301-309.
    15. Andrew, Robbie & Forgie, Vicky, 2008. "A three-perspective view of greenhouse gas emission responsibilities in New Zealand," Ecological Economics, Elsevier, vol. 68(1-2), pages 194-204, December.
    16. Wei Yang & Junnian Song & Yoshiro Higano & Jie Tang, 2015. "An Integrated Simulation Model for Dynamically Exploring the Optimal Solution to Mitigating Water Scarcity and Pollution," Sustainability, MDPI, vol. 7(2), pages 1-24, February.
    17. Duan, Cuncun & Chen, Bin & Feng, Kuishuang & Liu, Zhu & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2018. "Interregional carbon flows of China," Applied Energy, Elsevier, vol. 227(C), pages 342-352.
    18. Hao, Yan & Zhang, Menghui & Zhang, Yan & Fu, Chenling & Lu, Zhongming, 2018. "Multi-scale analysis of the energy metabolic processes in the Beijing–Tianjin–Hebei (Jing-Jin-Ji) urban agglomeration," Ecological Modelling, Elsevier, vol. 369(C), pages 66-76.
    19. Oliveira, C. & Coelho, D. & Pereira da Silva, P. & Antunes, C.H., 2013. "How many jobs can the RES-E sectors generate in the Portuguese context?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 444-455.
    20. Guerra, Ana-Isabel & Sancho, Ferran, 2018. "Positive and normative analysis of the output opportunity costs of GHG emissions reductions: A comparison of the six largest EU economies," Energy Policy, Elsevier, vol. 122(C), pages 45-62.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:181:y:2016:i:c:p:514-526. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.