IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v119y2014icp85-98.html
   My bibliography  Save this article

The carbon payback of micro-generation: An integrated hybrid input–output approach

Author

Listed:
  • Bush, Ruth
  • Jacques, David A.
  • Scott, Kate
  • Barrett, John

Abstract

Feed-in Tariffs (FiTs) in the UK have been introduced to stimulate growth in small-scale renewables such as photovoltaics and micro-wind. They form one of the UK’s key policies to decarbonise electricity by 2030. However, the evidence used to inform the policy was predominantly related to costs, capacity and deployment; not contribution to meeting decarbonisation targets. This paper employs an integrated hybrid lifecycle assessment method, which overcomes boundary limitations of traditional process-based assessments, to measure the full lifecycle emissions of solar PV and micro-wind technologies eligible under FiTs. Environmental assessments of policies often do not take account of the lifecycle emissions of technologies, therefore underestimating their emissions contribution and overestimating the success of policies towards decarbonisation targets. Considering the full lifecycle emissions, the paper assesses the effectiveness of FiTs for driving the UK’s low carbon transition. The results demonstrate that, while there is still significant variation and uncertainty with such estimates, even with the most conservative figures, both the technologies can offer substantial emission savings compared to fossil fuel alternatives when installed in suitable locations. However, the renewable resource of installation sites is critical to the carbon intensity that the technologies can offer. Under a poor renewable resource their impacts can be as high as fossil fuels alternatives. As FiTs makes no distinction between installation sites this should form part of the assessment of funding. Finally, despite their potential for carbon reduction, with the full lifecycle of the considered technologies taken into account, a target of 50gCO2e/kWh is not possible with the current technology generation efficiencies. The paper concludes that a complete re-assessment of the role of technologies in the decarbonisation of electricity is required to take into account the full lifecycle impacts to gain a more realistic picture of the mitigation potential.

Suggested Citation

  • Bush, Ruth & Jacques, David A. & Scott, Kate & Barrett, John, 2014. "The carbon payback of micro-generation: An integrated hybrid input–output approach," Applied Energy, Elsevier, vol. 119(C), pages 85-98.
  • Handle: RePEc:eee:appene:v:119:y:2014:i:c:p:85-98
    DOI: 10.1016/j.apenergy.2013.12.063
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914000038
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.12.063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reinout Heijungs & Arjan de Koning & Sangwon Suh & Gjalt Huppes, 2006. "Toward an Information Tool for Integrated Product Policy: Requirements for Data and Computation," Journal of Industrial Ecology, Yale University, vol. 10(3), pages 147-158, July.
    2. Arvesen, Anders & Bright, Ryan M. & Hertwich, Edgar G., 2011. "Considering only first-order effects? How simplifications lead to unrealistic technology optimism in climate change mitigation," Energy Policy, Elsevier, vol. 39(11), pages 7448-7454.
    3. Suh, Sangwon, 2004. "Functions, commodities and environmental impacts in an ecological-economic model," Ecological Economics, Elsevier, vol. 48(4), pages 451-467, April.
    4. Bullard, Clark W. & Penner, Peter S. & Pilati, David A., 1978. "Net energy analysis : Handbook for combining process and input-output analysis," Resources and Energy, Elsevier, vol. 1(3), pages 267-313, November.
    5. Lenzen, Manfred & Munksgaard, Jesper, 2002. "Energy and CO2 life-cycle analyses of wind turbines—review and applications," Renewable Energy, Elsevier, vol. 26(3), pages 339-362.
    6. Weekes, S.M. & Tomlin, A.S., 2013. "Evaluation of a semi-empirical model for predicting the wind energy resource relevant to small-scale wind turbines," Renewable Energy, Elsevier, vol. 50(C), pages 280-288.
    7. Cucchiella, Federica & D'Adamo, Idiano, 2012. "Estimation of the energetic and environmental impacts of a roof-mounted building-integrated photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5245-5259.
    8. Crawford, R.H., 2009. "Life cycle energy and greenhouse emissions analysis of wind turbines and the effect of size on energy yield," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2653-2660, December.
    9. David D. Hsu & Patrick O’Donoughue & Vasilis Fthenakis & Garvin A. Heath & Hyung Chul Kim & Pamala Sawyer & Jun‐Ki Choi & Damon E. Turney, 2012. "Life Cycle Greenhouse Gas Emissions of Crystalline Silicon Photovoltaic Electricity Generation," Journal of Industrial Ecology, Yale University, vol. 16(s1), pages 122-135, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin, Yi & Behrens, Paul & Tukker, Arnold & Scherer, Laura, 2019. "Water use of electricity technologies: A global meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    2. Alvarez, Sergio & Sosa, María & Rubio, Agustín, 2015. "Product and corporate carbon footprint using the compound method based on financial accounts. The case of Osorio wind farms," Applied Energy, Elsevier, vol. 139(C), pages 196-204.
    3. Pinto, Mauricio Almeida & Frate, Cláudio Albuquerque & Rodrigues, Thiago Oliveira & Caldeira-Pires, Armando, 2020. "Sensitivity analysis of the carbon payback time for a Brazilian photovoltaic power plant," Utilities Policy, Elsevier, vol. 63(C).
    4. Allan, Grant & Eromenko, Igor & Gilmartin, Michelle & Kockar, Ivana & McGregor, Peter, 2015. "The economics of distributed energy generation: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 543-556.
    5. Hairat, Manish Kumar & Ghosh, Sajal, 2017. "100GW solar power in India by 2022 – A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1041-1050.
    6. Barrows, S.E. & Homer, J.S. & Orrell, A.C., 2021. "Valuing wind as a distributed energy resource: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    7. de la Hoz, Jordi & Martín, Helena & Miret, Jaume & Castilla, Miguel & Guzman, Ramon, 2016. "Evaluating the 2014 retroactive regulatory framework applied to the grid connected PV systems in Spain," Applied Energy, Elsevier, vol. 170(C), pages 329-344.
    8. Chen, Zhan-Ming & Liu, Yu & Qin, Ping & Zhang, Bo & Lester, Leo & Chen, Guanghua & Guo, Yumei & Zheng, Xinye, 2015. "Environmental externality of coal use in China: Welfare effect and tax regulation," Applied Energy, Elsevier, vol. 156(C), pages 16-31.
    9. Soo Huey Teh & Thomas Wiedmann, 2018. "Decomposition of integrated hybrid life cycle inventories by origin and final-stage inputs," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 7(1), pages 1-15, December.
    10. Gooding, James & Crook, Rolf & Tomlin, Alison S., 2015. "Modelling of roof geometries from low-resolution LiDAR data for city-scale solar energy applications using a neighbouring buildings method," Applied Energy, Elsevier, vol. 148(C), pages 93-104.
    11. Man Yu & Thomas Wiedmann, 2018. "Implementing hybrid LCA routines in an input–output virtual laboratory," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 7(1), pages 1-24, December.
    12. Arvesen, Anders & Hauan, Ingrid Bjerke & Bolsøy, Bernhard Mikal & Hertwich, Edgar G., 2015. "Life cycle assessment of transport of electricity via different voltage levels: A case study for Nord-Trøndelag county in Norway," Applied Energy, Elsevier, vol. 157(C), pages 144-151.
    13. Yuan, Rong & Rodrigues, João F.D. & Tukker, Arnold & Behrens, Paul, 2018. "The impact of the expansion in non-fossil electricity infrastructure on China’s carbon emissions," Applied Energy, Elsevier, vol. 228(C), pages 1994-2008.
    14. de Carvalho, Ariovaldo Lopes & Antunes, Carlos Henggeler & Freire, Fausto, 2016. "Economic-energy-environment analysis of prospective sugarcane bioethanol production in Brazil," Applied Energy, Elsevier, vol. 181(C), pages 514-526.
    15. Kucukvar, Murat & Cansev, Bunyamin & Egilmez, Gokhan & Onat, Nuri C. & Samadi, Hamidreza, 2016. "Energy-climate-manufacturing nexus: New insights from the regional and global supply chains of manufacturing industries," Applied Energy, Elsevier, vol. 184(C), pages 889-904.
    16. Vasan, Arvind & Sood, Bhanu & Pecht, Michael, 2014. "Carbon footprinting of electronic products," Applied Energy, Elsevier, vol. 136(C), pages 636-648.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xueting Zhao, 2015. "LCA Methodologies an Annotated Bibliography," Working Papers Resource Document 2015-03, Regional Research Institute, West Virginia University.
    2. Gemechu, E.D. & Butnar, I. & Llop, M. & Castells, F., 2012. "Environmental tax on products and services based on their carbon footprint: A case study of the pulp and paper sector," Energy Policy, Elsevier, vol. 50(C), pages 336-344.
    3. Raadal, Hanne Lerche & Gagnon, Luc & Modahl, Ingunn Saur & Hanssen, Ole Jørgen, 2011. "Life cycle greenhouse gas (GHG) emissions from the generation of wind and hydro power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3417-3422, September.
    4. Reinout Heijungs & Yi Yang & Hung‐Suck Park, 2022. "A or I‐A? Unifying the computational structures of process‐ and IO‐based LCA for clarity and consistency," Journal of Industrial Ecology, Yale University, vol. 26(5), pages 1824-1836, October.
    5. Wu, Xudong & Li, Chaohui & Shao, Ling & Meng, Jing & Zhang, Lixiao & Chen, Guoqian, 2021. "Is solar power renewable and carbon-neutral: Evidence from a pilot solar tower plant in China under a systems view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    6. Turconi, Roberto & Boldrin, Alessio & Astrup, Thomas, 2013. "Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 555-565.
    7. Nugent, Daniel & Sovacool, Benjamin K., 2014. "Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: A critical meta-survey," Energy Policy, Elsevier, vol. 65(C), pages 229-244.
    8. Abolhosseini, Shahrouz & Heshmati, Almas & Altmann, Jörn, 2014. "A Review of Renewable Energy Supply and Energy Efficiency Technologies," IZA Discussion Papers 8145, Institute of Labor Economics (IZA).
    9. Niklas Andersen & Ola Eriksson & Karl Hillman & Marita Wallhagen, 2016. "Wind Turbines’ End-of-Life: Quantification and Characterisation of Future Waste Materials on a National Level," Energies, MDPI, vol. 9(12), pages 1-24, November.
    10. Oriana Gava & Fabio Bartolini & Francesca Venturi & Gianluca Brunori & Angela Zinnai & Alberto Pardossi, 2018. "A Reflection of the Use of the Life Cycle Assessment Tool for Agri-Food Sustainability," Sustainability, MDPI, vol. 11(1), pages 1-16, December.
    11. Kabir, Md Ruhul & Rooke, Braden & Dassanayake, G.D. Malinga & Fleck, Brian A., 2012. "Comparative life cycle energy, emission, and economic analysis of 100 kW nameplate wind power generation," Renewable Energy, Elsevier, vol. 37(1), pages 133-141.
    12. Savino, Matteo M. & Manzini, Riccardo & Della Selva, Vincenzo & Accorsi, Riccardo, 2017. "A new model for environmental and economic evaluation of renewable energy systems: The case of wind turbines," Applied Energy, Elsevier, vol. 189(C), pages 739-752.
    13. Wiedmann, Thomas, 2009. "A first empirical comparison of energy Footprints embodied in trade -- MRIO versus PLUM," Ecological Economics, Elsevier, vol. 68(7), pages 1975-1990, May.
    14. Dupont, Elise & Koppelaar, Rembrandt & Jeanmart, Hervé, 2018. "Global available wind energy with physical and energy return on investment constraints," Applied Energy, Elsevier, vol. 209(C), pages 322-338.
    15. Cholapat Jongdeepaisal & Seigo Nasu, 2018. "Economic Impact Evaluation of a Biomass Power Plant Using a Technical Coefficient Pre-Adjustment in Hybrid Input-Output Analysis," Energies, MDPI, vol. 11(3), pages 1-11, March.
    16. Kaldellis, John K. & Zafirakis, D., 2011. "The wind energy (r)evolution: A short review of a long history," Renewable Energy, Elsevier, vol. 36(7), pages 1887-1901.
    17. Elshkaki, Ayman & Graedel, T.E., 2015. "Solar cell metals and their hosts: A tale of oversupply and undersupply," Applied Energy, Elsevier, vol. 158(C), pages 167-177.
    18. Dijkman, T.J. & Benders, R.M.J., 2010. "Comparison of renewable fuels based on their land use using energy densities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3148-3155, December.
    19. Xin, Li & Feng, Kuishuang & Siu, Yim Ling & Hubacek, Klaus, 2015. "Challenges faced when energy meets water: CO2 and water implications of power generation in inner Mongolia of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 419-430.
    20. Berndt, M.L., 2015. "Influence of concrete mix design on CO2 emissions for large wind turbine foundations," Renewable Energy, Elsevier, vol. 83(C), pages 608-614.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:119:y:2014:i:c:p:85-98. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.