Accuracy of automated measurement and verification (M&V) techniques for energy savings in commercial buildings
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2016.04.049
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhao, Hai-xiang & Magoulès, Frédéric, 2012. "A review on the prediction of building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3586-3592.
- Granderson, Jessica & Price, Phillip N. & Jump, David & Addy, Nathan & Sohn, Michael D., 2015. "Automated measurement and verification: Performance of public domain whole-building electric baseline models," Applied Energy, Elsevier, vol. 144(C), pages 106-113.
- Walter, Travis & Price, Phillip N. & Sohn, Michael D., 2014. "Uncertainty estimation improves energy measurement and verification procedures," Applied Energy, Elsevier, vol. 130(C), pages 230-236.
- Granderson, Jessica & Price, Phillip N., 2014. "Development and application of a statistical methodology to evaluate the predictive accuracy of building energy baseline models," Energy, Elsevier, vol. 66(C), pages 981-990.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Töppel, Jannick & Tränkler, Timm, 2019. "Modeling energy efficiency insurances and energy performance contracts for a quantitative comparison of risk mitigation potential," Energy Economics, Elsevier, vol. 80(C), pages 842-859.
- Abdurahman Alrobaie & Moncef Krarti, 2022. "A Review of Data-Driven Approaches for Measurement and Verification Analysis of Building Energy Retrofits," Energies, MDPI, vol. 15(21), pages 1-30, October.
- Carstens, Herman & Xia, Xiaohua & Yadavalli, Sarma, 2018. "Measurement uncertainty in energy monitoring: Present state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2791-2805.
- Fu, Hongxiang & Baltazar, Juan-Carlos & Claridge, David E., 2021. "Review of developments in whole-building statistical energy consumption models for commercial buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
- Cory Mosiman & Gregor Henze & Herbert Els, 2021. "Development and Application of Schema Based Occupant-Centric Building Performance Metrics," Energies, MDPI, vol. 14(12), pages 1-16, June.
- Grillone, Benedetto & Danov, Stoyan & Sumper, Andreas & Cipriano, Jordi & Mor, Gerard, 2020. "A review of deterministic and data-driven methods to quantify energy efficiency savings and to predict retrofitting scenarios in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
- Fu, Chun & Miller, Clayton, 2022. "Using Google Trends as a proxy for occupant behavior to predict building energy consumption," Applied Energy, Elsevier, vol. 310(C).
- Carstens, Herman & Xia, Xiaohua & Yadavalli, Sarma, 2017. "Low-cost energy meter calibration method for measurement and verification," Applied Energy, Elsevier, vol. 188(C), pages 563-575.
- Jeong, Cheoljoon & Byon, Eunshin, 2024. "Calibration of building energy computer models via bias-corrected iteratively reweighted least squares method," Applied Energy, Elsevier, vol. 360(C).
- Jeong Soo Shin & Jong Woo Park & Sean Hay Kim, 2020. "Measurement and Verification of Integrated Ground Source Heat Pumps on a Shared Ground Loop," Energies, MDPI, vol. 13(7), pages 1-24, April.
- Díaz, Julián Arco & Ramos, José Sánchez & Delgado, M. Carmen Guerrero & García, David Hidalgo & Montoya, Francisco Gil & Domínguez, Servando Álvarez, 2018. "A daily baseline model based on transfer functions for the verification of energy saving. A case study of the administration room at the Palacio de la Madraza, Granada," Applied Energy, Elsevier, vol. 224(C), pages 538-549.
- Ke, Ming-Tsun & Yeh, Chia-Hung & Su, Cheng-Jie, 2017. "Cloud computing platform for real-time measurement and verification of energy performance," Applied Energy, Elsevier, vol. 188(C), pages 497-507.
- Baltuttis, Dennik & Töppel, Jannick & Tränkler, Timm & Wiethe, Christian, 2020. "Managing the risks of energy efficiency insurances in a portfolio context: An actuarial diversification approach," International Review of Financial Analysis, Elsevier, vol. 68(C).
- Simon Rouchier, 2022. "Bayesian Workflow and Hidden Markov Energy-Signature Model for Measurement and Verification," Energies, MDPI, vol. 15(10), pages 1-19, May.
- Granderson, Jessica & Fernandes, Samuel & Touzani, Samir & Lee, Chih-Cheng & Crowe, Eliot & Sheridan, Margaret, 2020. "Spatio-temporal impacts of a utility’s efficiency portfolio on the distribution grid," Energy, Elsevier, vol. 212(C).
- Herman Carstens & Xiaohua Xia & Sarma Yadavalli, 2018. "Bayesian Energy Measurement and Verification Analysis," Energies, MDPI, vol. 11(2), pages 1-20, February.
- Grillone, Benedetto & Mor, Gerard & Danov, Stoyan & Cipriano, Jordi & Sumper, Andreas, 2021. "A data-driven methodology for enhanced measurement and verification of energy efficiency savings in commercial buildings," Applied Energy, Elsevier, vol. 301(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Fu, Hongxiang & Baltazar, Juan-Carlos & Claridge, David E., 2021. "Review of developments in whole-building statistical energy consumption models for commercial buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
- Liang, Xin & Hong, Tianzhen & Shen, Geoffrey Qiping, 2016. "Improving the accuracy of energy baseline models for commercial buildings with occupancy data," Applied Energy, Elsevier, vol. 179(C), pages 247-260.
- Suwon Song & Chun Gun Park, 2019. "Alternative Algorithm for Automatically Driving Best-Fit Building Energy Baseline Models Using a Data—Driven Grid Search," Sustainability, MDPI, vol. 11(24), pages 1-11, December.
- Ye, Xianming & Xia, Xiaohua, 2016. "Optimal metering plan for measurement and verification on a lighting case study," Energy, Elsevier, vol. 95(C), pages 580-592.
- Chitalia, Gopal & Pipattanasomporn, Manisa & Garg, Vishal & Rahman, Saifur, 2020. "Robust short-term electrical load forecasting framework for commercial buildings using deep recurrent neural networks," Applied Energy, Elsevier, vol. 278(C).
- Alain Poulin & Marie-Andrée Leduc & Michaël Fournier, 2022. "Statistical Analysis of Baseline Load Models for Residential Buildings in the Context of Winter Demand Response," Energies, MDPI, vol. 15(12), pages 1-14, June.
- Kapp, Sean & Choi, Jun-Ki & Hong, Taehoon, 2023. "Predicting industrial building energy consumption with statistical and machine-learning models informed by physical system parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
- Longo, Stefano & d’Antoni, Benedetto Mirko & Bongards, Michael & Chaparro, Antonio & Cronrath, Andreas & Fatone, Francesco & Lema, Juan M. & Mauricio-Iglesias, Miguel & Soares, Ana & Hospido, Almudena, 2016. "Monitoring and diagnosis of energy consumption in wastewater treatment plants. A state of the art and proposals for improvement," Applied Energy, Elsevier, vol. 179(C), pages 1251-1268.
- Angeliki Mavrigiannaki & Kostas Gobakis & Dionysia Kolokotsa & Kostas Kalaitzakis & Anna Laura Pisello & Cristina Piselli & Rajat Gupta & Matt Gregg & Marina Laskari & Maria Saliari & Margarita-Niki A, 2020. "Measurement and Verification of Zero Energy Settlements: Lessons Learned from Four Pilot Cases in Europe," Sustainability, MDPI, vol. 12(22), pages 1-16, November.
- Ziras, Charalampos & Heinrich, Carsten & Pertl, Michael & Bindner, Henrik W., 2019. "Experimental flexibility identification of aggregated residential thermal loads using behind-the-meter data," Applied Energy, Elsevier, vol. 242(C), pages 1407-1421.
- Olinga, Zadok & Xia, Xiaohua & Ye, Xianming, 2017. "A cost-effective approach to handle measurement and verification uncertainties of energy savings," Energy, Elsevier, vol. 141(C), pages 1600-1609.
- Shen, Yuxuan & Pan, Yue, 2023. "BIM-supported automatic energy performance analysis for green building design using explainable machine learning and multi-objective optimization," Applied Energy, Elsevier, vol. 333(C).
- Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
- Langevin, J. & Reyna, J.L. & Ebrahimigharehbaghi, S. & Sandberg, N. & Fennell, P. & Nägeli, C. & Laverge, J. & Delghust, M. & Mata, É. & Van Hove, M. & Webster, J. & Federico, F. & Jakob, M. & Camaras, 2020. "Developing a common approach for classifying building stock energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
- Wang, Manyu & Wei, Chu, 2024. "Toward sustainable heating: Assessment of the carbon mitigation potential from residential heating in northern rural China," Energy Policy, Elsevier, vol. 190(C).
- Nutkiewicz, Alex & Yang, Zheng & Jain, Rishee K., 2018. "Data-driven Urban Energy Simulation (DUE-S): A framework for integrating engineering simulation and machine learning methods in a multi-scale urban energy modeling workflow," Applied Energy, Elsevier, vol. 225(C), pages 1176-1189.
- Abu Bakar, Nur Najihah & Hassan, Mohammad Yusri & Abdullah, Hayati & Rahman, Hasimah Abdul & Abdullah, Md Pauzi & Hussin, Faridah & Bandi, Masilah, 2015. "Energy efficiency index as an indicator for measuring building energy performance: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 1-11.
- Luo, X.J. & Oyedele, Lukumon O. & Ajayi, Anuoluwapo O. & Akinade, Olugbenga O. & Owolabi, Hakeem A. & Ahmed, Ashraf, 2020. "Feature extraction and genetic algorithm enhanced adaptive deep neural network for energy consumption prediction in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
- Roth, Jonathan & Martin, Amory & Miller, Clayton & Jain, Rishee K., 2020. "SynCity: Using open data to create a synthetic city of hourly building energy estimates by integrating data-driven and physics-based methods," Applied Energy, Elsevier, vol. 280(C).
- Severinsen, A. & Myrland, Ø., 2022. "ShinyRBase: Near real-time energy saving models using reactive programming," Applied Energy, Elsevier, vol. 325(C).
More about this item
Keywords
Baseline model; Measurement and verification; Whole-building energy; Predictive performance accuracy; Building energy analysis; M&V 2.0;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:173:y:2016:i:c:p:296-308. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.